
SpiderBasic Reference Manual
3.02

http://www.spiderbasic.com/

February 12, 2025

Contents

I General 4

1 Introduction 5

2 Terms And Conditions 6

3 System requirements 7

4 Installation 8

5 Order 9

6 Contact 11

7 Acknowledgements 12

II The SpiderBasic Editor 13

8 Getting Started 14

9 Working with source files 16

10 Editing features 18

11 Managing projects 24

12 Compiling your programs 29

13 Using the built-in Tools 35

14 Using external tools 44

15 Getting Help 49

16 Customizing the IDE 51

17 Command-line options for the IDE 66

III Language Reference 68

18 Working with different number bases 69

19 Break : Continue 73

20 Using the command line compiler 74

21 Compiler Directives 76

22 Compiler Functions 80

23 Data 85

1

24 Debugger keywords in SpiderBasic 87

25 Define 89

26 Dim 91

27 Enumerations 93

28 For : Next 95

29 ForEach : Next 97

30 General Rules 99

31 Global 102

32 Handles and Numbers 104

33 If : Else : EndIf 106

34 Import : EndImport 107

35 Includes Functions 108

36 Inline Javascript 110

37 Interfaces 112

38 Licenses for the SpiderBasic applications 114

39 Macros 121

40 Pointers and memory access 124

41 Module 127

42 NewList 130

43 NewMap 132

44 Others Commands 134

45 Procedures 136

46 Protected 139

47 Prototypes 141

48 Repeat : Until 142

49 Residents 143

50 Runtime 144

51 Select : EndSelect 146

52 Using several SpiderBasic versions on Windows 148

53 Shared 149

54 SpiderBasic objects 150

55 Static 153

2

56 Structures 155

57 Subsystems 158

58 Variables and Types 159

59 While : Wend 168

60 With : EndWith 169

3

Part I

General

4

Chapter 1

Introduction

SpiderBasic is an ”high-level” programming language based on established ”BASIC” rules. It does share
background with other ”BASIC” compiler, but has its own syntax extensions. Learning SpiderBasic is
very easy! SpiderBasic has been created for beginners and experts alike. Compilation time is extremely
fast. We have put a lot of effort into its realization to produce a fast, reliable and system-friendly
language.
The syntax is easy and the possibilities are huge with the ”advanced” functions that have been added to
this language like structures, procedures, dynamic lists and much more. For the experienced coder, there
are no problems gaining access to external third party libraries.

The main features of SpiderBasic

- Huge set of internal commands (500+) to quickly and easily build applications or games
- BASIC based keywords
- Very fast compiler which creates optimized apps
- Procedure and structure support for advanced programming
- Built-in containers like array, list and map
- Strong types, strong syntax to avoid programming mistakes
- Full unicode support
- Namespace support for easy code reuse
- Easy but very fast 2D game support through WebGL
- Inlined JavaScript support for extensibility
- Dedicated editor and development environment
- Available on Windows, MacOS X and Linux
- Very close to PureBasic, which allow to port easily an application to the desktop

5

Chapter 2

Terms And Conditions

This program is provided ”AS IS”. Fantaisie Software are NOT responsible for any damage (or
damages) attributed to SpiderBasic. You are warned that you use SpiderBasic at your own risk. No
warranties are implied or given by Fantaisie Software or any representative.
The demo version of this program may be freely distributed provided all contents, of the original archive,
remain intact. You may not modify, or change, the contents of the original archive without express
written consent from Fantaisie Software.
SpiderBasic has an user-based license. This means you can install it on every computer you need but
you can’t share it between two or more people.
All components, libraries, and binaries are copyrighted by Fantaisie Software.
Fantaisie Software reserves all rights to this program and all original archives and contents.

6

Chapter 3

System requirements

SpiderBasic will run on Windows XP, Windows Vista, Windows 7 and Windows 8 (in both 32-bit and
64-bit edition), Linux (kernel 2.2 or above) and MacOS X (10.6 or above).
If there are any problems, please contact us.

7

Chapter 4

Installation

To install SpiderBasic, just click on the install wizard, follow the steps, and then click on the SpiderBasic
icon (found on the desktop or in the start-menu) to launch SpiderBasic.
To use the command line compiler, open a standard command line window (CMD) and look in the
”Compilers\” subdirectory for PBCompiler.exe. It’s a good idea to consider adding the
”SpiderBasic\Compilers\” directory to the PATH environment variable to make the compiler accessible
from any directory.
Important note: to avoid conflicts with existing SpiderBasic installations (maybe even with
user-libraries), please install a new SpiderBasic version always in its own new folder. See also the chapter
Using several SpiderBasic versions .

8

Chapter 5

Order

SpiderBasic is a low-cost programming language. In buying SpiderBasic you will ensure that
development will go further and faster. The updates are free until the next major version. For example,
when you buy SpiderBasic 1.00, all further 1.xx updates will be free, and the 2.00 version and above will
need a new registration fee. For ease of ordering, you can safely use our secure online method. Thanks a
lot for your support!

The demo-version of SpiderBasic is limited as shown below:

- maximum number of source lines: about 800

Full version of SpiderBasic:

Check http://www.spiderbasic.com for more information about pricing.

If you live in Germany or Europe and prefer paying to bank account you can
also send your registration to the German team member. In this case please
send your order to following address:

Andre Beer
Siedlung 6
09548 Deutschneudorf
Germany
e-mail: andre@spiderbasic.com

Bank Account:
Deutsche Kreditbank AG
Account 15920010 - Bank code 12030000
(For transactions from EU countries: IBAN: DE03120300000015920010 -
BIC/Swift -Code: BYLADEM1001)

Paypal:
andrebeer@gmx.de
(This address can be used for Paypal transaction , if you want
personal contact to or an invoice from Andre.)

9

http://www.spiderbasic.com

Delivering of the full version

The full version will be provided via your personal download account, which you will get on
www.spiderbasic.com after successful registration. If you order from Andre, just write an e-mail with
your full address or use this registration form and print it or send it via e-mail.

10

Chapter 6

Contact

Please send bug reports, suggestions, improvements, examples of source coding, or if you just want to
contact us, to any of the following addresses:

Frederic ’AlphaSND’ Laboureur

Fred ’AlphaSND’ is the founder of Fantaisie Software and the main coder for SpiderBasic. All
suggestions, bug reports, etc. should be sent to him at either address shown below:

s-mail :

Frederic Laboureur
10, rue de Lausanne
67640 Fegersheim
France

e-mail : fred@spiderbasic.com

Andre Beer

Andre is responsible for the complete German translation of the SpiderBasic manual and website.
SpiderBasic can be ordered in Germany also directly at him.
Just write an email with your full address (for the registration) to him. If needed you can also get an
invoice from him. For more details just take a look here.
e-mail : andre@spiderbasic.com

11

mailto:fred@spiderbasic.com
http://www.spiderbasic.com/offlineordering.php
mailto:andre@spiderbasic.com

Chapter 7

Acknowledgements

We would like to thank the many people who have helped in this ambitious project. It would not have
been possible without them !

- All the registered users: To support this software... Many Thanks !

Coders

- Timo ’Fr34k’ Harter: For the IDE, Debugger, many commands and the great ideas. SpiderBasic
wouldn’t be the same without him !
- Gaetan Dupont-Panon: For the wonderful new visual designer, which really rocks on Windows,
Linux and OS X !

Miscellaneous

- Andre Beer: To spend time for improving the guides (including beginners guide) and do the complete
translation into German. Big thanks!

12

Part II

The SpiderBasic Editor

13

Chapter 8

Getting Started

The SpiderBasic IDE allows you to create and edit your SpiderBasic source codes, as well as run them,
debug them and create the final project.
The IDE main window contains of 3 major parts:

The code editing area (below the toolbar)
Here all the source codes are displayed. You can switch between them with the tabs located
right above it.
The tools panel (on the right side by default)
Here you have several tools to make coding easier and increase productivity. The tools
displayed here can be configured, and it can even be completely removed. See Customizing
the IDE for more information.
The error log (located below the editing area)
In this area, the compiler errors and debugger messages are logged. It can be hidden/shown
for each source code separately.

14

Other then that, there is the main menu and the toolbar. The toolbar simply provides shortcuts to
menu features. It can be fully customized. To find out what each button does, move your mouse over it
and wait until a small tool-tip appears. It shows the corresponding menu command. The menu
commands are explained in the other sections.

15

Chapter 9

Working with source files

The file menu allows you to do basic file operations like opening and saving source codes.
You can edit multiple source code files at the same time. You can switch between them using the panel
located under the Toolbar. Also the shortcut keys Ctrl+Tab and Ctrl+Shift+Tab can be used to jump
to the next or previous open source file, respectively.
The IDE allows the editing of non-sourcecode text files. In this ”plain text” mode, code-related features
such as coloring, case correction, auto complete are disabled. When saving plain text files, the IDE will
not append its settings to the end of the file, even if this is configured for code files in the Preferences .
Whether or not a file is considered a code-file or not depends on the file extension. The standard
SpiderBasic file extensions (sb, sbi and sbf) are recognized as code files. More file extensions can be
recognized as code files by configuring their extension in the ”Editor” section of the Preferences .

Contents of the ”File” menu:

New
Create a new empty source code file.
Open
Open an existing source code file for editing.
Any text file will be loaded into the source-editing field. You can also load binary files with the Open
menu. These will be displayed in the internal File Viewer .
Save

16

Saves the currently active source to disk. If the file isn’t saved yet, you will be prompted for a filename.
Otherwise the code will be saved in the file it was saved in before.
Save As...
Save the currently active source to a different location than it was saved before. This prompts you for a
new filename and leaves the old file (if any) untouched.
Save All
Saves all currently opened sources.
Reload
Reloads the currently active source code from disk. This discards any changes not yet saved.
Close
Closes the currently active source code. If it was the only open code, the IDE will display a new empty
file.
Close All
Closes all currently opened sources.
View changes
Shows the changes made to the current source code compared to its version that exists on the hard drive.
File format
In this submenu you can select the text encoding as well as the newline format which should be used
when the currently active source code is saved to disk. The IDE can handle files in Ascii or UTF-8. The
newline formats it can handle are Windows (CRLF), Linux/Unix (LF) and MacOSX (CR). The defaults
for newly created source codes can be set in the preferences .
Preferences
Here you can change all the settings that control the look & behavior of the IDE. For a detailed
description of that see Customizing the IDE .
Session history
Session history is a powerful tool which regularly records changes made to any files in a database. A
session is created when the IDE launch, and is closed when the IDE quits. This is useful to rollback to a
previous version of a file, or to find back a deleted or corrupted file. It’s like source backup tool, limited
in time (by default one month of recording). It’s not aimed to replace a real source code version control
system like SVN or GIT. It’s complementary to have finer change trace. The source code will be stored
without encryption, so if you are working on sensitive source code, be sure to have this database file in a
secure location, or disable this feature. To configure the session history tool, see preferences .

Recent Files
Here you can see a list of the last accessed files. Selecting a file in this submenu will open it again.
Quit
This of course closes the IDE. You will be asked to save any non-saved source codes.

17

Chapter 10

Editing features

The SpiderBasic IDE acts like any other Text Editor when it comes to the basic editing features. The
cursor keys as well as Page Up/Page Down, Home and End keys can be used to navigate through the
code. Ctrl+Home navigates to the beginning of the file and Ctrl+End to the End.
The default shortcuts Ctrl+C (copy), Ctrl+X (cut) and Ctrl+V (paste) can be used for editing. The
”Insert” key controls whether text is inserted or overwritten. The Delete key does a forward delete.
Holding down the Shift key and using the arrow keys selects text.
Furthermore, the IDE has many extra editing features specific to programming or SpiderBasic.

Indentation:

When you press enter, the indentation (number of space/tab at the beginning of the line) of the current
and next line will be automatically corrected depending on the keywords that exist on these lines. A
”block mode” is also available where the new line simply gets the same indentation as the previous one.
The details of this feature can be customized in the preferences .

Tab characters:

By default, the IDE does not insert a real tab when pressing the Tab key, as many programmers see it as
a bad thing to use real tabs in source code.
It instead inserts two spaces. This behavior can be changed in the Preferences. See Customizing the IDE
for more information.

Special Tab behavior:

When the Tab key is pressed while nothing or only a few characters are selected, the Tab key acts as
mentioned above (inserting a number of spaces, or a real tab if configured that way).
However when one or more full lines are selected, the reaction is different. In that case at the beginning
of each selected line, it will insert spaces or a tab (depending on the configuration). This increases the
indentation of the whole selected block.
Marking several lines of text and pressing Shift+Tab reverses this behavior. It removes spaces/tabs at
the start of each line in order to reduce the indentation of the whole block.

Indentation/Alignment of comments:

Similar to the special tab behavior above, the keyboard shortcuts Ctrl+E and Ctrl+Shift+E (CMD+E
and CMD+Shift+E on OSX) can be used to change the indentation of only the comments in a selected

18

block of code. This helps in aligning comments at the end of code lines to make the code more readable.
The used shortcut can be configured in the preferences .

Selecting blocks of code:

The shortcut Ctrl+M (CMD+M on OSX) can be used to select the block of code that contains caret
position (i.e. the surrounding If block, loop or procedure). Repeated usage of the shortcut selects further
surrounding code blocks.
The shortcut Ctrl+Shift+M (CMD+Shift+M on OSX) reverses the behavior and reverts the selection to
the block that was selected before the last usage of the Ctrl+M shortcut.
The used shortcuts can be configured in the preferences .

Double-clicking on source text:

Double-clicking on a word selects the whole word as usual. However in some cases, double-clicking has a
special meaning:
When double-clicking on the name of a procedure that is defined in the current source while holding
down the Ctrl Key, the cursor automatically jumps to the declaration of this procedure.
When double-clicking on an IncludeFile or XincludeFile statement, the IDE will try to open that file.
(This is only possible if the included file is written as a literal string, and not through for example a
constant.)
In the same way, if you double-click on an IncludeBinary statement, the IDE will try to display that file
in the internal file viewer .

Marking of matching Braces and Keywords:

When the cursor is on an opening or closing brace the IDE will highlight the other brace that matches
it. If a matching brace could not be found (which is a syntax error in SpiderBasic) the IDE will highlight
the current brace in red. This same concept is applied to keywords. If the cursor is on a Keyword such
as ”If”, the IDE will underline this keyword and all keywords that belong to it such as ”Else” or ”EndIf”.
If there is a mismatch in the keywords it will be underlined in red. The ”Goto matching Keyword” menu
entry described below can be used to quickly move between the matching keywords.
The brace and keyword matching can be configured in the Preferences .

Command help in the status bar:

While typing, the IDE will show the needed parameters for any SpiderBasic function whose parameters
you are currently typing. This makes it easy to see any more parameters you still have to add to this

19

function. This also works for procedures , prototypes or interfaces in your code as long as they are
declared in the same source code or project .

Folding options:

When special folding keywords are encountered (Procedure / EndProcedure by default. More can be
added), the IDE marks the region between these keywords on the left side next to the line numbers with
a [-] at the starting point, followed by a vertical line to the end point.
By clicking on the [-], you can hide (”fold”) that section of source code to keep a better overview of larger
source files. The [-] will turn into a [+]. By clicking again, the code will again be shown (”unfolded”)
again.
Note: Even though the state of these folded code lines is remembered when you save/reopen the file, the
actual created code file always contains all lines. This only affects the display of the code in the IDE, not
the code itself.
Another default fold keyword is ”;{” and ”;}”. Since ”;” marks a comment in PB, these will be totally
ignored by the compiler. However, they provide the possibility to place custom fold points that do not
correspond to a specific PB keyword.

Auto complete:

So that you do not have to remember the exact name of every command, there is the Auto complete
feature to make things easier.
After you have typed the beginning of a command, a list of possible matches to the word start you have
just typed will be displayed. A list of options is also displayed when you typed a structured variable or
interface followed by a ”\”.
You can then select one of these words with the up/down keys and insert it at the point you are by
pressing the Tab key. You can also continue typing while the list is open. It will select the first match
that is still possible after what you typed, and close automatically when either you have just typed an
exact match or if there are no more possible matches in the list.
Escape closes the auto complete list at any time. It also closes if you click with the mouse anywhere
within the IDE.
Note: You can configure what is displayed in the Auto complete list, as well as turning off the automatic
popup (requiring a keyboard shortcut such as Ctrl+Space to open list) in the Preferences. See the Auto
complete section of Customizing the IDE for more information.

20

Tools Panel on the side:

Many tools to make navigating/editing the source code easier can be added to the Tools Panel on the
side of the editor window. For an overview of them and how to configure them, see Built-in Tools .

The Edit Menu:

Following is an explanation of the Items in the Edit menu. Note that many of the Edit menu items are
also accessible by right clicking on the source code, which opens a popup menu.

Undo
Undoes the last done action in the code editing area. There is an undo buffer, so several actions can be
undone.
Redo
Redo the last action undone by the undo function.
Cut
Copy the selected part of the source code to the clipboard and remove it from the code.
Copy
Copy the selected text to the Clipboard without deleting it from the code.

21

Paste
Insert the content of the Clipboard at the current position in the code. If any text is selected before this,
it will be removed and replaced with the content of the Clipboard.
Insert comments
Inserts a comment (”;”) before every line of the selected code block. This makes commenting large blocks
of code easier than putting the ; before each line manually.
Remove comments
Removes the comment characters at the beginning of each selected line. This reverts the ”Insert
comments” command, but also works on comments manually set.
Format indentation
Reformats the indentation of the selected lines to align with the code above them and to reflect the
keywords that they contain. The rules for the indentation can be specified in the preferences .
Select all Selects the whole source code.
Goto
This lets you jump to a specific line in your source code.
Goto matching Keyword
If the cursor is currently on a keyword such as ”If” this menu option jumps directly to the keyword that
matches it (in this case ”EndIf”).
Goto recent line
The IDE keeps track of the lines you view. For example if you switch to a different line with the above
Goto function, or with the Procedure Browser tool. With this menu option you can jump back to the
previous position. 20 such past cursor positions are remembered.
Note that this only records greater jumps in the code. Not if you just move up/down a few lines with
the cursor keys.
Toggle current fold
This opens/closes the fold point in which the cursor is currently located.
Toggle all Folds
This opens/closes all fold points in the current source. Very useful to for example hide all procedures in
the code. Or to quickly see the whole code again when some of the code is folded.
Add/Remove Marker
Markers act like Bookmarks in the source code. There presence is indicated by a little arrow next to the
line numbers. You can later jump to these markers with the ”Jump to marker” command.
The ”Add/Remove Marker” sets or removes a marker from the current line you are editing.
Note: You can also set/remove markers by holding down the Ctrl Key and clicking on the border that
holds the markers (not the Line-number part of it).
Jump to Marker
This makes the cursor jump to the next marker position further down the code from the current cursor
position. If there is no marker after the cursor position, it jumps to the first on in the source code. So by
pressing the ”Jump to Marker” shortcut (F2 by default) several times, you can jump to all the markers
in the code.
Clear Markers This removes all markers from the current source code.
Find/Replace

The find/replace dialog enables you to search for specific words in your code, and also to replace them
with something else.
The ”Find Next” button starts the search. The search can be continued after a match is found with the
Find Next menu command (F3 by default).
You can make the search more specific by enabling one of the checkboxes:

22

Case Sensitive : Only text that matches the exact case of the search word will be found.
Whole Words only : Search for the given word as a whole word. Do not display results where the search
word is part of another word.
Don’t search in Comments : Any match that is found inside a comment is ignored.
Don’t search in Strings : Any match that is found inside a literal string (in ” ”) is ignored.
Search inside Selection only : Searches only the selected region of code. This is really useful only
together with the ”Replace All” button, in which case it will replace any found match, but only inside
the selected region.
By enabling the ”Replace with” checkbox, you go into replace mode. ”Find Next” will still only search,
but with each click on the ”Replace” button, the next match of the search word will be replaced by
whatever is inside the ”Replace with” box.
By clicking on ”Replace All”, all matches from the current position downwards will be replaced (unless
”Search inside Selection only” is set).
Find Next
This continues the search for the next match of the last search started by the Find/Replace dialog.
Find in Files

The Find in Files Dialog lets you carry out a search inside many files in a specific directory.
You have to specify a search keyword, as well as a base directory (”root directory”) in which to search.
You can customize the searched files by specifying extension filters. Any number of filters can be given
separated by ”,”. (*.* or an empty extension field searches all files). As with ”Find/Replace”, there are
checkboxes to make the search more specific.
The ”Include sub-directories” checkbox makes it search (recursively) inside any subdirectory of the given
root directory too.
When starting the search, a separate window will be opened displaying the search results, giving the file,
line number as well as the matched line of each result.
Double-clicking on an entry in the result window opens that file in the IDE and jumps to the selected
result line.

23

Chapter 11

Managing projects

The IDE comes with features to easily handle larger projects. These features are completely optional.
Programs can be created and compiled without making use of the project management. However, once a
program consists of a number of source code and maybe other related files, it can be simpler to handle
them all in one project.

Project management overview

A project allows the management of multiple source codes and other related files in one place with quick
access to the files through the project tool . Source files included in a project can be scanned for
AutoComplete even if they are not currently open in the IDE. This way functions, constants, variables
etc. from the entire project can be used with AutoComplete. The project can also remember the source
files that are open when the project is closed and reopen them the next time to continue working exactly
where you left off.
Furthermore, a project keeps all the compiler settings in one place (the project file) and even allows to
manage multiple ”compile targets” per project. A compile target is just a set of compiler options. This
way multiple versions of the same program, or multiple smaller programs in one project can be easily
compiled at once.
To compile a project from a script or makefile, the IDE provides command-line options to compile a
project without opening a user interface. See the section on command-line options for more details.
All filenames and paths in a project are stored relative to the project file which allows a project to be
easily moved to another location as long as the relative directory structure remains intact.

The Project menu

New Project
Creates a new project. If there is a project open at the time it will be closed. The project options
window will be opened where the project filename has to be specified and the project can be configured.

24

Open Project
Opens an existing project. If there is a project open at the time it will be closed. Previously open source
codes of the project will be opened as well, depending on the project configuration.
Recent Projects
This submenu shows a list of recently opened project files. Selecting one of the entries opens this project.
Close Project
Closes the currently open project. The settings will be saved and the currently open source files of the
project will be closed, depending on the project configuration.
Project Options
Opens the project options window. See below for more information.
Add File to Project
Adds the currently active source code to the current project. Files belonging to the project are marked
with a ”>” in the file panel.
Remove File from Project
Removes the currently active source from the current project.
Open Project folder
Opens the folder that contains the project file in whatever file manager is available on the system.

The project options window

The project options window is the central configuration for the project. The general project settings as
well as the settings for the individual files in the project can me made here.

The following settings can be made on the ”Project Options” tab:
Project File
Shows the filename of the project file. This can only be changed during project creation.
Project Name
The name of the project. This name is displayed in the IDE title bar and in the ”Recent Projects” menu.
Comments
This field allows to add some comments to the project. They will be displayed in the project info tab.
Set as default project
The default project will be loaded on every start of the IDE. Only one project can be the default project
at a time. If there is no default project, the IDE will load the project that was open when the IDE was

25

closed last time if there was one.
Close all sources when closing the project
If enabled, all sources that belong to the project will be closed automatically when the project is closed.
When opening the project...

load all sources that where open last time
When the project is opened, all the sources that were open when the project was closed will
be opened again.
load all sources of the project
When the project is opened, all (source-)files of the project will be opened.
load only sources marked in ’Project Files’
When the project is opened, only the files that are marked in the ’Project Files’ tab will be
opened. This way you can start a session always with this set of files open.
load only the main file of the default target
When the project is opened, the main file of the default target will be opened too.
load no files
No source files are opened when the project is opened.

The ”Project Files” tabs shows the list of files in the project on the right and allows changing their
settings. The explorer on the left is for the selection of new files to be added.

The buttons on the top have the following function:

Add
Add the selected file(s) in the explorer to the project.
Remove
Remove the selected files in the file list from the project.
New
Shows a file requester to select a filename for a new source file to create. The new file will be
created, opened in the IDE and also added to the project.
Open
Shows a file requester to select an existing file to open. The file will be opened in the IDE
and added to the project.

26

View
Opens the selected file(s) in the file list in the IDE or if they are binary files in the FileViewer.

The checkboxes on the bottom specify the options for the files in the project. They can be applied to a
single file or to multiple files at once by selecting the files and changing the state of the checkboxes. The
settings have the following meaning:

Load file when opening the project
Files with this option will be loaded when the project is open and the ”load only sources
marked in ’Project Files” ’ option is specified on the ”Project Options” tab.
Display a warning if file changed
When the project is closed, the IDE will calculate a checksum of all files that have this
option set and display a warning if the file has been modified when the project is opened the
next time. This allows to be notified when a file that is shared between multiple projects has
been edited while working on another project. This option should be disabled for large data
files to speed up project loading and saving, or for files which are changed frequently to avoid
getting a warning every time the project is opened.
Scan file for AutoComplete
Files with this option will be scanned for AutoComplete data even when they are not
currently loaded in the IDE. This option is on by default for all non-binary files. It should be
turned off for all files that do not contain source code as well as for any files where you do
not want the items to turn up in the AutoComplete list.
Show file in Project panel
Files with this option will be displayed in the project side-panel. If the project has many files
it may make sense to hide some of them from the panel to have a better overview and faster
access to the important files in the project.

The project overview

When a project is open, the first tab of the file panel shows an overview of the project and its files.

Project Info

27

This section shows some general info about the project, such as the project filename, its comments or
when and where the project was last opened.
Project Files
This section shows all files in the project and their settings from the Project Options window.
Double-clicking on one of the files opens the file in the IDE. Right-clicking displays a context menu with
further options:

Open - Open the file in the IDE.
Open in FileViewer - Open the file in the FileViewer of the IDE.
Open in Explorer - Open the file in the operating systems file manager.
Add File to Project - Add a new file to the project.
Remove File from Project - Remove the selected file(s) from the project.
Refresh AutoComplete data - Rescan the file for AutoComplete items.

Project Targets
This section shows all compile targets in the project and some of their settings. Double-clicking on one
of the targets opens this target in the compiler options . Right-clicking on one of the targets displays a
context menu with further options:

Edit target - Open the target in the compiler options.
Set as default target - Set this target as the default target.
Enable in ’Build all Targets’ - Include this target in the ’Build all Targets’ compiler menu
option.

The project panel

There is a sidepanel tool which allows quick access to the files belonging to the project. For more
information see the built-in tools section.

28

Chapter 12

Compiling your programs

Compiling is easy. Just select ”Compile/Run” (F5 by default) and your program will be compiled and
launched in the default web browser.
To customize the compiling process, you can open the ”Compiler options” dialog. The settings made
there are associated with the current source file or the current project, and also remembered when they
are closed. The place where this information is saved can be configured. By default, it is saved at the
end of the source code as a comment (invisible in the IDE).
In case of an error that prevents the compiler from completing the compilation, it aborts and displays an
error-message. This message is also logged in the error log, and the line that caused the error is marked.
A number of functions from older versions of SpiderBasic that have been removed from the package still
exist for a while as a compatibility wrapper to allow older codes to be tested/ported more easily. If such
a function is used in the code, the compiler will issue a warning. A window will be opened displaying all
warnings issued during compilation. Double-clicking on a warning will display the file/line that caused
the warning. Note that such compatibility wrappers will not remain indefinitely but will be removed in a
future update, so it is recommended to fix issues that cause a compiler warning instead of relying on
such deprecated functions.

The compiler menu

Compile/Run
This compiles the current source code with the compiler options set for it and executes it. The
executable file is stored in a temporary location, but it will be executed with the current path set to the
directory of the source code; so loading a file from the same directory as the source code will work.
The source code need not be saved for this (but any included files must be saved).
The ”Compile/Run” option respects the debugger setting (on or off) from the compiler options or
debugger menu (they are the same).
Run
This executes the last compiled source code once again. Whether or not the debugger is enabled depends
on the setting of the last compilation.
Compile with Debugger
This is the same as ”Compile/Run” except that it ignores the debugger setting and enabled the debugger

29

for this compilation. This is useful when you usually have the debugger off, but want to have it on for
just this one compilation.
Compile without Debugger
Same as ”Compile with Debugger” except that it forces the debugger to be off for this compilation.
Restart Compiler (not present on all OS)
This causes the compiler to restart. It also causes the compiler to reload all the libraries and resident
files, and with that, the list of known SpiderBasic functions, Structures, Interfaces and Constants is
updated too. This function is useful when you have added a new User Library to the PB directory, but
do not want to restart the whole IDE. It is especially useful for library developers to test their library.
Compiler Options
This opens the compiler options dialog, that lets you set the options for the compilation of this source
file.
Export
Launch the export process. The export settings can be changed in the ”Compiler Options/Export” panel.
Set default Target
When a project is open, this submenu shows all compile targets and allows to quickly switch the current
default target. The default target is the one which is compiled/executed with the ”Compile/Run” menu
entry.
Build Target
When a project is open, this submenu shows all compile targets and allows to directly compile one of
them.
Build all Targets
When a project is open, this menu entry compiles all targets that have this option enabled in the
compiler options. A window is opened to show the build progress.

Compiler options for non-project files

Main source file
By enabling this option, you can define another file that will be the one sent to the compiler instead of
this one. The use of this is that when you are editing a file that does not run by itself, but is included
into another file, you can tell the compiler to use that other file to start the compilation.
Note: When using this option, you MUST save your source before compiling, as only files that are
written to disk will be used in this case. Most of the compiler settings will be taken from the main
source file, so when setting this, they are disabled. Only some settings like the debugger setting will be
used from the current source.
Use Compiler
This option allows the selection of a different compiler to use instead of the compiler of the current

30

SpiderBasic version. This makes it easy to compile different versions of the same program (x86 and x64
or PowerPC) without having to start up the IDE for the other compiler just for the compilation.
Additional compilers for this option have to be configured in the preferences .
If the compiler version matches that of the default compiler but the target processor is different then the
built-in debugger of the IDE can still be used to debug the compiled executable. This means that an
executable compiled with the x86 compiler can be debugged using the x64 IDE and vice versa on
Windows and Linux. The same applies to the x86 and PowerPC compilers for Mac OSX. This is
especially useful as this way the fast x86 IDE and debugger can be used on a Mac with an Intel
processor while still compiling programs for the PowerPC processor through the slower emulation. If the
version does not match then the standalone debugger that comes with the selected compiler will be used
for debugging to avoid version conflicts.
Use icon
When enabled, allow to set the ”favicon” file for the web application. The icon has to be in the PNG
image format. This icon is usually displayed in the browser tab, near the page title.
Enable DPI Aware application
This option enable DPI awareness when creating an application. That means than the canvas and
images created in SpiderBasic will scale automatically if the DPI of the screen is above 100%. The
functions can be used to detect which scale is currently applied when this option is enabled.
Optimize JavaScript output
When enabled, uses the Google JavaScript closure compiler to optimize the generated JavaScript code to
reduce its size. A recent Java JRE needs to be installed to have this option working. The most recent
JRE version can be found here: https://java.com/download.
Library Subsystem
Here you can select different subsystems for compilation. More than one subsystem can be specified,
separated with space character. For more information, see subsystems .

Compile/Run

This section contains options that affect how the executable is run from the IDE for testing. Except for
the tools option, they have no effect when the ”Create executable” menu is used.

Enable Debugger
This sets the debugger state (on/off) for this source code, or if the main file option is used, for that file
too. This can also be set from the debugger menu.
Web server address
This allows to set a specific web server address for this file or project. The value has to be specified as
’address:port’ (example: ’localhost:8080’ or ’mydomain:80’). If set to an empty value, localhost will be

31

https://java.com/download

used with a random dynamic port, starting from the value set in Preferences/Compiler.
Execute tools
Here external tools can be enabled on a per-source basis. The ”Global settings” column shows if the tool
is enabled or disabled in the tools configuration . A tool will only be executed for the source if it is both
enabled globally and for this source.
Note: For a tool to be listed here, it must have the ”Enable Tool on a per-source basis” option checked in
the tools configuration and be executed by a trigger that is associated with a source file (i.e. not
executed by menu or by editor startup for example).

Constants

In this section, a set of special editor constants as well as custom constants can be defined which will be
predefined when compiling this source.

#PB_Editor_CompileCount
If enabled, this constant holds the number of times that the code was compiled (both with
”Compile/Run” and ”Create Executable”) from the IDE. The counter can be manually edited in the
input field.
#PB_Editor_BuildCount
If enabled, this constant holds the number of times that the code was compiled with ”Create Executable”
only. The counter can be manually edited in the input field.
#PB_Editor_CreateExecutable
If enabled, this constants holds a value of 1 if the code is compiled with the ”Create Executable” menu or
0 if ”Compile/Run” was used.
Custom constants
Here, custom constants can be defined and then easily switched on/off through checkboxes. Constant
definitions should be added as they would be written within the source code. This provides a way to
enable/disable certain features in a program by defining a constant here and then checking in the source
for it to enable/disable the features with CompilerIf/CompilerEndIf .
Inside the definition of these constants, environment variables can be used by specifying them in a
”bash” like style with a ”$” in front. The environment variable will be replaced in the constant definition
before compiling the source. This allows to pass certain options of the system that the code is compiled
on to the program in the form of constants.
Example: #Creator=”$USERNAME”
Here, the $USERNAME will be replaced by the username of the logged in user on Windows systems. If
an environment variable does not exist, it will be replaced by an empty string.
Note: To test within the source code if a constant is defined or not, the Defined() compiler function can

32

be used.

Compiler options for projects

The compiler options for projects allow the definition of multiple compile targets. Each target is
basically a set of compiler options with a designated source file and output executable. The left side of
the compiler options window is extended with the list of the defined compile targets. The toolbar on top
of it allows to create, delete, copy, edit or move targets in the list.
The default target is the one which will be compiled when the ”Compile/Run” menu entry is selected. It
can be quickly switched with the ”Set as default target” checkbox or from the compiler menu. The
”Enable in ’Build all Targets” ’ option specifies whether or not the selected target will be built when the
’Build all Targets’ menu entry is used.
The right side of the compiler options is almost the same as in the non-project mode and reflects the
settings for the compile target that is currently selected on the left. The only difference is the ”Input
source file” on the first tab. This fields has to be specified for all compile targets. Other than that, the
compiler options are identical to the options described above.
In project mode, the information about the compile target is stored in the project file and not in the
individual source files. Information that belongs to the file (such as the folding state) are still saved for
the individual source files in the location specified by the Preferences .

33

The Build progress window

When the ’Build all Targets’ menu entry is selected on an open project, all targets that have the
corresponding option set in the compiler options will be compiled in the order they are defined in the
compiler options. The progress window shows the current compile progress as well as the status of each
target. When the process is finished, the build log can be copied to the clipboard or saved to disk.

34

Chapter 13

Using the built-in Tools

The SpiderBasic IDE comes with many building tools, to make programming tasks easier and increase
your productivity. Many of them can be configured to be either accessible from the Menu as separate
windows, or to be permanently displayed in the Panel on the side of the editing area.
For information on how to configure these tools and where they are displayed, see Configuring the IDE .

Tools for the Side Panel Area

WebView

This tool displays and internal web browser to launch the SpiderBasic programs directly in the IDE.
When the web view is enabled, the debugger automatically connect to it and the errors are directly
reported in the IDE, on the correct file and line.
The ’earth’ button is available to open the program into the default web browser.
The ’Kill Program’ button (red cross in the toolbar) can be used to reset the web view content and stop
the SpiderBasic program. Procedure Browser

35

This tool displays a list of all procedures and macros declared in the current source code. By
double-clicking on an entry in that list, the cursor automatically jumps to that procedure.
Macros will be marked in the list by a ”+” sign before the name.
You can also place special comment marks in your code, that will be displayed in the list too. They look
like this: ”;- <description>”. The ; starts a comment, the - that follows it immediately defines such a
mark.
The description will be shown in the Procedure list, and clicking on it will jump to the line of this mark.
Such a comment mark can be distinguished from a Procedure by the ”> ” that is displayed before it in
the procedure list.
The list of procedures can be sorted, and it can display the procedure/macro arguments in the list. For
these options, see Configuring the IDE .
Project Panel

This tool displays a tree of all files in the current project . A double-click on a file opens it in the IDE.
This allows fast access to all files in the project. A right-click on a file opens a context menu which
provides more options:

Open - Open the file in the IDE.
Open in FileViewer - Open the file in the FileViewer of the IDE.
Open in Explorer - Open the file in the operating systems file manager.
Add File to Project - Add a new file to the project.
Remove File from Project - Remove the selected file(s) from the project.
Refresh AutoComplete data - Rescan the file for AutoComplete items.

Explorer

36

The Explorer tool displays an explorer, from which you can select files and open them quickly with a
double-click. SpiderBasic files (*.sb, *.sbi, *.sbp, *.sbf) will be loaded into the edit area and all other
recognized files (text & binary) files will be displayed into the internal File Viewer.
Variable Viewer

The variable viewer can display variables , Arrays , lists , Constants , Structures and Interfaces defined
in your source code, or any currently opened file. You can configure what exactly it should display in the
preferences .
Note: The displaying of variables is somewhat limited for now. It can only detect variables explicitly
declared with Define , Global , Shared , Protected or Static .
Code Templates

37

The templates tool allows you to manage a list of small code parts, that you can quickly insert into your
source code with a double-click. It allows you to manage the codes in different directories, and put a
comment to each code. This tool is perfect to manage small, often used code parts.
Issue Browser

The issue browser tool collects comments in the source code that fit a defined format and lists them
ordered by priority. It can be used to track which areas of the source code still need to be worked on.
Each displayed issue corresponds to one comment in the code. A double-click on the issue shows that
code line. Issues can be displayed for the current file, or for multiple files (all open files, or all files that
belong to the current project). The issue list can also be exported in CSV format.
To configure the collected issues, see the ”Issues” section in the Preferences .
Color Picker

38

The color picker helps you to find the perfect color value for whatever task you need. The following
methods of picking a color are available:
RGB: Select a color by choosing red, green and blue intensities.
HSV: Select a color by choosing hue, saturation and value.
HSL: Select a color by choosing hue, saturation and lightness.
Wheel: Select a color using the HSV model in a color wheel.
Palette: Select a color from a predefined palette.
Name: Select a color from a palette by name.
The color selection includes an alpha component, if the ”Include alpha channel” checkbox is activated.
The individual components (red/green/blue intensities or hue/saturation/lightness) as well as the
hexadecimal representation of the current color can be seen and modified in the text fields.
The ”Insert Color” button inserts the hexadecimal value of the current color in the source code. The
”Insert RGB” button inserts the color as a call to the RGB() or RGBA() function into the code. The
”Save Color” button saves the current color to the history area at the bottom. Clicking on a color in the
history makes it the current color again.
Ascii Table

39

The Ascii table tool displays a table showing all the Ascii characters, together with their index in
decimal and hex, as well as the corresponding html notation. By double-clicking on any line, this
character will be inserted into the source code. With the buttons on the bottom, you can select which
column of the table to insert on a double-click.
Help Tool

The Help Tool is an alternative viewer for the reference guide . It can be used to view the SpiderBasic
manual side by side with the code. Whether or not the F1 shortcut opens the manual in the tool or as a
separate window can be specified in the preferences .

40

Other built-in tools

Structure Viewer

The structure viewer allows you to view all the Structures, Interfaces and Constants predefined in
SpiderBasic. Double-clicking on a Structure or Interface shows the declaration. On top of the list you
can select a filter to display only entries that start with a given character.
The ”Back” button navigates back through the viewed entries.
”Insert name” inserts just the name of the selected entry.
”Insert copy” inserts a copy of the declaration of that entry.
”Insert” lets you enter a variable name and then inserts a definition of that variable and the selected
entry and all elements of it.
File Viewer

41

The internal file viewer allows you do display certain types of files. Text files, images and web pages
(windows only). Any unknown file type will be displayed in a hex-viewer. The ”Open” button opens a
new file, the ”X button” closes it and the arrows can be used to navigate through the open files.
Also any binary file that you attempt to open from the Explorer tool, or by double-clicking on an
IncludeBinary keyword will be displayed in this file viewer.
Compare Files/Folders

This tool can compare two (text-) files or two directories and highlight their differences. The ”Options”
tab can be used to ignore some differences such as spaces or upper/lowercase changes.

42

The files are shown side by side with the differences marked in the following way: Lines shown in red
were removed in the file on the right, lines shown in green were added in the file on the right and lines
shown in yellow were changed between the two files.

When comparing directories, the content of both directories is examined (with the option to filter the
search by file extension and include subdirectories) and the files are marked in a similar way: Files in red
do not exist in the second directory, files in green are new in the second directory and files in yellow were
modified. A double-click on a modified file shows the modifications made to that file.

43

Chapter 14

Using external tools

The SpiderBasic IDE allows you to configure external programs to be called directly from the IDE,
through the Menu, Shortcuts, the Toolbar, or on special ”triggers”. The use of this is to make any other
program you use while programming easily accessible.
You can also write your own little tools in SpiderBasic that will perform special actions on the source
code you are currently viewing to automate common tasks. Furthermore, you can configure external file
viewers to replace the internal File Viewer of the IDE for either specific file types or all files.

With the ”Config tools” command in the Tools menu, you can configure such external tools. The list you
will see displays all the configured tools in the order they appear in the Tools menu (if not hidden). You
can add and remove tools here, or change the order by clicking ”Move Up”/”Move Down ” after selecting
an item.

Any tool can be quickly enabled or disabled from the ”Config tools” window with the checkbox before
each tool entry. A checked checkbox means the tool is enabled, an unchecked one means it is currently
disabled.

Configuring a tool

The basic things you need to set is the command-line of the program to run, and a name for it in the
Tools list/Menu. Everything else is optional.

44

Command-line
Select the program name to execute here.
Arguments
Place command-line arguments that will be passed to the program here. You can place fixed options, as
well as special tokens that will be replaced when running the program:
%PATH : will be replaced with the path of the current source code. Remains empty if the source was
not saved.
%FILE : filename of the current source code. Remains empty if it has not yet been saved. If you
configure the tool to replace the file viewer, this token represents the file that is to be opened.
%TEMPFILE : When this option is given, the current source code is saved in a temporary file, and the
filename is inserted here. You may modify or delete the file at will.
%COMPILEFILE : This token is only valid for the compilation triggers (see below). This is replaced
with the temporary file that is sent to the compiler for compilation. By modifying this file, you can
actually change what will be compiled.
%EXECUTABLE : This will be replaced by the name of the executable that was created in with the last
”Create Executable”. For the ”After Compile/Run” trigger, this will be replaces with the name of the
temporary executable file created by the compiler.
%CURSOR : this will be replaced by the current cursor position in the form of LINExCOLUMN.
%SELECTION : this will be replaced by the current selection in the form of
LINESTARTxCOLUMNSTARTxLINEENDxCOLUMNEND. This can be used together with
%TEMPFILE, if you want your tool to do some action based on the selected area of text.
%WORD : contains the word currently under the cursor.
%PROJECT : the full path to the directory containing the project file if a project is open.
%HOME : the full path to the spiderbasic directory
Note: for any filename or path tokens, it is generally a good idea to place them in ”” (i.e.
”%TEMPFILE”) to ensure also paths with spaces in them are passed correctly to the tool. These tokens
and a description can also be viewed by clicking the ”Info” button next to the Arguments field.
Working Directory
Select a directory in which to execute this tool. By specifying no directory here, the tool will be
executed in the directory of the currently open source code.
Name
Select a name for the tool. This name will be displayed in the tools list, and if the tool is not hidden
from the menu, also in the Tools menu.

Event to trigger the tool

Here you can select when the tool should be executed. Any number of tools can have the same trigger,
they will all be executed when the trigger event happens. The order of their execution depends on the

45

order they appear in the tools list.

Menu Or Shortcut
The tool will not be executed automatically. It will be run by a shortcut or from the Menu. Note: to
execute a tool from the Toolbar, you have to add a button for it in the Toolbar configuration in the
Preferences (see Configuring the IDE for more).
With this trigger set, the ”Shortcut” option below becomes valid and lets you specify a shortcut that will
execute this tool.
Editor Startup
The tool will be executed right after the IDE has been fully started.
Editor End
The tool will be executed right before the IDE ends. Note that all open sources have already been closed
at this time.
Before Compile/Run
The tool will be executed right before the compiler is called to compile a source code. Using the
%COMPILEFILE token, you can get the code to be compiled and modify it. This makes it possible to
write a small pre-processor for the source code. Note that you should enable the ”Wait until tool quits”
option if you want your modifications to be given to the compiler.
After Compile/Run
The tool will be executed right after the compilation is finished, but before the executable is executed for
testing. Using the %EXECUTABLE token, you can get access to the file that has just been created.
Note that you can modify the file, but not delete it, as that results in an error-message when the IDE
tries to execute the file.
Run compiled Program
The tool will be executed when the user selects the ”Run” command from the compiler menu. The tool
is executed before the executable is started. The %EXECUTABLE token is valid here too.
Before create Executable
The same as for the ”Before Compile/Run” trigger applies here too, only that the triggering event is
when the user creates the final executable.
After create Executable
The tool is executed after the compilation to create the final executable is complete. You can use the
%EXECUTABLE token to get the name of the created file and perform any further action on it.
Source code loaded
The tool is executed after a source code has been loaded into the IDE. The %FILE and %PATH tokens
are always valid here, as the file was just loaded from the disk.
Source code saved
The tool will be executed after a source code in the IDE has been saved successfully. The %FILE and
%PATH tokens are always valid here, as the file has just been saved to disk.
Source code closed
The tool will be executed whenever a source file is about to be closed. At this point the file is still there,
so you can still get its content with the %TEMPFILE token. %FILE will be empty if the file was never
saved.
File Viewer All Files
The tool will completely replace the internal file viewer. If an attempt is made in the IDE to open a file
that cannot be loaded into the edit area, the IDE will first try the tools that have a trigger set for the
specific file type, and if none is found, the file will be directed to this tool. Use the %FILE token to get
the filename of the file to be opened.
Note: Only one tool can have this trigger. Any other tools with this trigger will be ignored.

46

File Viewer Unknown file
This tool basically replaces the hex viewer, which is usually used to display unknown file types. It will be
executed, when the file extension is unknown to the IDE, and if no other external tool is configured to
handle the file (if a tool is set with the ”File Viewer All Files” trigger, then this tool will never be called).
Note: Only one tool can have this trigger set.
File Viewer Special file
This configures the tool to handle specific file extensions. It has a higher priority than the ”File Viewer
All files” or ”File Viewer Unknown file” triggers and also higher than the internal file viewer itself.
Specify the extensions that the tool should handle in the edit box on the right. Multiple extensions can
be given.
A common use for this trigger is for example to configure a program like Acrobat Reader to handle the
”pdf” extension, which enables you to easily open pdf files from the Explorer, the File Viewer, or by
double-clicking on an Includebinary statement in the source.

Other options on the right side

Wait until tool quits
The IDE will be locked for no input and cease all its actions until you tool has finished running. This
option is required if you want to modify a source code and reload it afterwards, or have it passed on to
the compiler for the compilation triggers.
Run hidden
Runs the program in invisible mode. Do not use this option for any program that might expect user
input, as there will be no way to close it in that case.
Hide editor
This is only possible with the ”wait until tool quits” option set. Hides the editor while the tool is running.
Reload Source after the tool has quit
This is only possible with the ”wait until tool quits” option set, and when either the %FILE or
%TEMPFILE tokens are used in the Arguments list.
After your program has quit, the IDE will reload the source code back into the editor. You can select
whether it should replace the old code or be opened in a new code view.
Hide Tool from the Main menu
Hides the tool from the Tools menu. This is useful for tools that should only be executed by a special
trigger, but not from the menu.
Enable Tool on a per-source basis
Tools with this option set will be listed in the ”Execute tools” list in the compiler options , and only
executed for sources where it is enabled there. Note that when disabling the tool with the checkbox here
in the ”Config tools” window, it will be globally disabled and not run for any source code, even if enabled
there.
This option is only available for the following triggers:
- Before Compile/Run
- After Compile/Run
- Run compiled Program
- Before create Executable
- After create Executable
- Source code loaded
- Source code saved
- Source code closed
Supported File extensions
Only for the ”File Viewer Special file” trigger. Enter the list of handled extensions here.

Tips for writing your own code processing tools

The IDE provides additional information for the tools in the form of environment variables.
This is a list of provided variables. Note that those that provide information about the active source are
not present for tools executed on IDE startup or end.

PB_TOOL_IDE - Full path and filename of the IDE

47

PB_TOOL_Compiler - Full path and filename of the Compiler
PB_TOOL_Preferences - Full path and filename of the IDE’s Preference
file

PB_TOOL_Project - Full path and filename of the currently open
project (if any)

PB_TOOL_Language - Language currently used in the IDE
PB_TOOL_FileList - A list of all open files in the IDE , separated
by Chr (10)

PB_TOOL_Debugger - These variables provide the settings from the
Compiler Options

PB_TOOL_InlineASM window for the current source. They are set to
"1" if the option

PB_TOOL_Unicode is enabled , and "0" if not.
PB_TOOL_Thread
PB_TOOL_XPSkin
PB_TOOL_OnError

PB_TOOL_SubSystem - content of the "Subsystem" field in the
compiler options

PB_TOOL_Executable - same as the %COMPILEFILE token for the
command -line

PB_TOOL_Cursor - same as the %CURSOR token for the command -line
PB_TOOL_Selection - same as the %SELECTION token for the
command -line

PB_TOOL_Word - same as the %WORD token for the command -line

PB_TOOL_MainWindow - OS handle to the main IDE window
PB_TOOL_Scintilla - OS handle to the Scintilla editing component of
the current source

When the %TEMPFILE or %COMPILEFILE tokens are used, the IDE appends the compiler options as
a comment to the end of the created temporary file, even if the user did choose to not save the options
there when saving a source code.
This enables your tool to read the compiler settings for this file, and take them into account for the
actions your carries out.

48

Chapter 15

Getting Help

The SpiderBasic IDE provides ways to access the SpiderBasic help-file, as well as other files and
documentation you want to view while programming.

Quick access to the reference guide

By pressing the help shortcut (F1 by default) or selecting the ”Help...” command from the Help menu
while the mouse cursor is over a SpiderBasic keyword or function, the help will be opened directly at the
description of that keyword or function.
If the word at the cursor position has no help entry, the main reference page will be displayed.
The reference manual can also be viewed side by side with the source code using the Help Tool .

49

Accessing external helpfiles from the IDE

If you have other helpfiles you wish to be able to access from the IDE, then create a ”Help” subdirectory
in your SpiderBasic folder and copy them to it. These files will appear in the ”External Help” submenu
of the Help menu, and in the popupmenu you get when right-clicking in the editing area. Chm and Hlp
files will be displayed in the MS help viewer. The IDE will open the helpfiles in the internal fileviewer.
So files like text files can be viewed directly like this. For other types, you can use the Config Tools
menu to configure an external tool to handle the type of help-file you use. The help will then be
displayed in that tool.
For example, if you have pdf helpfiles, configure an external tool to handle pdf files and put the files in
the Help subdirectory of SpiderBasic. Now if you click the file in the ”external help” menu, it will be
opened in that external tool.

50

Chapter 16

Customizing the IDE

The SpiderBasic IDE provides many options to customize or disable some of its features in order to
become the perfect tool for you.
These options are accessible from the Preferences command in the File menu, and the meaning of each
setting is described here.
Any changes made will only take effect once you click the ”OK” button or ”Apply”.

General

Options that affect the general behavior of the IDE.
Run only one Instance
If set, prevents the IDE from being opened more than once. Clicking on a PB file in the explorer will
open it in the already existing IDE instance instead of opening a new one.
Disable Splash screen
Disables the splash screen that is displayed on start-up.
Memorize Window positions

51

Remembers the position of all IDE windows when you close them. If you prefer to have all windows
open at a specific location and size, enable this option, move all windows to the perfect position, then
restart the IDE (to save all options) and then disable this option to always open all windows in the last
saved position.
Show window contents while moving the Splitter
Enable this only if you have a fast computer. Otherwise moving the Splitter bar to the Error Log or
Tools Panel may flicker a lot.
Auto-Reload last open sources
On IDE start-up, opens all the sources that were open when the IDE was closed the last time.
Display full Source Path in Title bar
If set, the IDE title bar will show the full path to the currently edited file. If not, only the filename is
shown.
Recent Files list
This setting specifies how many entries are shown in the ”Recent Files” submenu of the File menu.
Search History size
This setting specifies how many recent search words are remembered for ”Find/Replace” and ”Find in
Files”
Check for updates
Specifies how often the IDE should check on the spiderbasic.com server for the availability of new
updates. An update check can also be performed manually at any time from the ”Help” menu.
Check for releases
Specifies which kind of releases should cause a notification if they are available.

General - Language

This allows you to change the language of the IDE. The combo box shows the available languages, and
you can view some information about the language file (for example who translated it and when it was
last updated).

General - Shortcuts

Here you can fully customize all the shortcut commands of the IDE. Select an entry from the list, select
the shortcut field, enter the new key combination and click ”Set” to change the entry.
Note that Tab & Shift+Tab are reserved for block-indentation and un-indentation and cannot be

52

changed. Furthermore some key combination might have a special meaning for the OS and should
therefore not be used.

General - Themes

This section shows the available icon themes for the IDE and allows to select the theme to use. The IDE
comes with two themes by default.
More themes can be easily added by creating a zip-file containing the images (in png format) and a
”Theme.prefs” file to describe the theme. The zip-file has to be copied to the ”Themes” folder in the
SpiderBasic installation directory to be recognized by the IDE. The ”SilkTheme.zip” file can be used as
an example to create a new theme.
Display Icons in the Menu
Allows to hide/show the images in the IDE menus.
Show main Toolbar
Allows to hide/show the main toolbar in order to gain space for the editing area.

General - Toolbar

This allows to fully customize the main Toolbar. By selecting an entry and using the Buttons in the
”Position” section, you can change the order. The ”Item Settings” section can be used to modify the
entry or add a new one. New ones are always added at the end of the list.
Types of items:
Separator : a vertical separator line.
Space : an empty space, the size of one toolbar icon.
Standard Icon : allows you to select a OS standard icon from the combo box on the right.
IDE Icon : allows you to select one of the IDE’s own icons in the combo box on the right.
Icon File : allows you to specify your own icon file to use in the edit box on the right (PNG files are
supported on all platforms, Windows additionally supports icon files).

53

If you do not select a separator or space, you can specify an action to carry out when the button is
pressed:
Menu Item : carries out the menu command specified in the combo box on the right.
Run tool : executes the external tool specified in the combo box on the right.
The ”Default Sets” section contains two standard toolbar sets which you can select, and later modify.

Editor

Settings that affect the management of the source codes.
Monitor open files for changes on disk
Monitors all open files for changes that are made to the files on disk while they are edited in the IDE. If
modifications are made by other programs, a warning is displayed with the choice to reload the file from
disk.
Auto-save before compiling
Saves the current source code before each compile/run or executable creation. Note that any open
include files are not automatically saved.
Save all sources with Auto-save
Saves all sources instead of just the current one with one of the Auto-save options.
Memorize cursor position
Saves the current cursor position, as well as the state of all folding marks with the compiler options for
the source file.
Memorize Marker positions
Saves all the Markers with the options for the source file.
Always hide the error log
The error log can be shown/hidden on a per-source basis. This option provides a global setting to ignore
the per-source setting and never display the error log. It also removes the corresponding menu entries
from the IDE menu.
Save settings to
This option allows to specify where the compiler options of a source file are saved:

The end of the Source file
Saves the settings as a special comment block at the end of each source file.
The file <filename>.sb.cfg
Creates a .sb.cfg file for each saved source code that contains this information.
A common file project.cfg for every directory
Creates a file called project.cfg in each directory where PB files are saved. This one file will
contain the options for all files in that directory.
Don’t save anything

54

No options are saved. When reopening a source file, the defaults will always be used.

Tab Length
Allows to specify how many spaces are inserted each time you press the Tab key.
Use real Tab (Ascii 9)
If set, the tab key inserts a real tab character instead of spaces. If not set, there are spaces inserted
when Tab is pressed.
Note that if real tab is used, the ”Tab Length” option specifies the size of one displayed tab character.
Source Directory
Specifies the default directory used in the Open and Save dialogs if no other files are currently open (if
another file is open, its path will be used as default).
Set this to the path were you usually save the source codes.
Code file extensions
The IDE detects code files by their extension (sb, sbi or sbf by default). Non-code files are edited in a
”plain text” mode in which code-related features are disabled. This setting causes the IDE to recognize
further file extensions as code files. The field can contain a comma-separated list (i.e. ”sbx, xyz”) of
extensions to recognize.

Editor - Editing

Use ”Select Font” to change the font used to display the source code. To ensure a good view of the
source code, it should be a fixed-size font, and possibly even one where bold characters have the same
size as non-bold ones.
Enable bolding of keywords
If your font does not display bold characters in the same size as non-bold ones, you should disable this
option. If disabled, the keywords will not be shown as bold.
Enable case correction
If enabled, the case of SpiderBasic keywords, SpiderBasic Functions as well as predefined constants will
automatically be corrected while you type.
Enable marking of matching Braces
If enabled, the brace matching the one under the cursor will be highlighted.
Enable marking of matching Keywords
If enabled, the keyword(s) matching the one under the cursor will be underlined.
Display line numbers
Shows or hides the line number column on the left.

55

Editor - Coloring

Here you can change the color settings for the syntax coloring, as well as the debugger marks. Default
color schemes can be selected from the box on the bottom, and also modified after they have been set.
Individual color settings can be disabled by use of the checkboxes.
Note: The ’Accessibility’ color scheme has (apart from high-contrast colors) a special setting to always
use the system color for the selection in the code editor. This helps screen-reader applications to better
detect the selected text.

Editor - Coloring - Custom Keywords

In this section, a list of custom keywords can be defined. These keywords can have a special color
assigned to them in the coloring options and the IDE will apply case-correction to them if this feature is
enabled. This allows for applying a special color to special keywords by preprocessor tools or macro sets,
or to simply have some PB keywords colored differently.
Note that these keywords take precedence above all other coloring in the IDE, so this allows to change
the color or case correction even for SpiderBasic keywords.
The keywords can be either entered directly in the preferences or specified in a text file with one
keyword per line (or both).

56

Editor - Folding

Here you can set the keywords in the source code that start/end a foldable section of code. You can add
any number of words that will mark such a sections. You can also choose to completely disable the
folding feature.
Words that are found inside comments are ignored, unless the defined keyword includes the comment
symbol at the start (like the default ”;{” keyword).
A keyword may not include spaces.

Editor - Indentation

Here you can specify how the editor handles code indentation when the return key is pressed.
No indentation
Pressing return always places the cursor at the beginning of the next line.
Block mode
The newly created line gets the same indentation as the one before it.
Keyword sensitive
Pressing the return key corrects the indentation of both the old line and the new line depending on the
keywords on these lines. The rules for this are specified in the keyword list below. These rules also apply
when the ”Reformat indentation” item in the edit menu is used.
Show indentation guides
Causes vertical lines to be shown to visualize the indentation on each line. This makes it easier to see
which source lines are on the same level of indentation.
Show whitespace characters
Causes whitespace characters to be visible as little dots (spaces) or arrows (tab characters).
The keyword list contains the keywords that have an effect on the indentation. The ”Before” setting
specifies the change in indentation on the line that contains the keyword itself while the ”After” setting
specifies the change that applies to the line after it.

57

Editor - Auto complete

Display the full Auto complete list
Always displays all keywords in the list, but selects the closest match.
Display all words that start with the first character
Displays only those words that start with the same character as you typed. The closest mach is selected.
Display only words that start with the typed word
Does not display any words that do not start with what you typed. If no words match, the list is not
displayed at all.
Box width / Box height
Here you can define the size of the auto complete list (in pixel). Note that these are maximum values.
The displayed box may become smaller if there are only a few items to display.
Add opening Brackets to Functions/Arrays/Lists
Will automatically add a ”(” after any function/Array/List inserted by auto complete. Functions with no
parameters or lists get a ”()” added.
Add a Space after PB Keywords followed by an expression
When inserting PB keywords that cannot appear alone, a space is automatically added after them.
Add matching End’ keyword if Tab/Enter is pressed twice
If you press Tab or Enter twice, it will insert the corresponding end keyword (for example ”EndSelect” to
”Select” or ”EndIf ” to ”If”) to the keyword you have just inserted. The end keyword will be inserted
after the cursor, so you can continue typing after the first keyword that was inserted.
Automatically popup AutoComplete for Structure items
Displays the list automatically whenever a structured variable or interface is entered and the ”\”
character is typed after it to show the list of possible structure fields. If disabled, the list can still be
displayed by pressing the keyboard shortcut to open the AutoComplete window (usually Ctrl+Space,
this can be modified in the Shortcuts section of the Preferences).
Automatically popup AutoComplete outside of Structures
Displays the list automatically when the current word is not a structure after a certain amount of
characters has been typed, and a possible match in the list is found. If disabled, the list can still be
displayed by pressing the assigned keyboard shortcut.
Characters needed before opening the list
Here you can specify how many characters the word must have minimum before the list is automatically
displayed.

58

Editor - Auto complete - Displayed items

This shows a list of possible items that can be included with the possible matches in the AutoComplete
list.
Source code Items
Items defined in the active source code, or other open sources (see below).
Predefined Items
Items that are predefined by SpiderBasic, such as the SpiderBasic keywords, functions or predefined
constants.
Add Items from: the current source only
Source code items are only added from the active source code.
Add Items from: the current project (if any)
Source code items are added from the current project if there is one. The other source codes in the
project do not have to be currently open in the IDE for this.
Add Items from: the current project or all files (if none)
Source code items are added from the current project. If the current source code does not belong to the
open project then the items from all open source codes will be added.
Add Items from: all open files
Source code items are added from all currently open source codes.

Editor - Issues

Allows to configure the collection of ’issue’ markers from comments in the source code. Issue markers
can be displayed in the Issues or ProcedureBrowser tool, and they can be marked within the source code
with a separate background color.
A definition for an issue consists of the following:

Issue name
A name for the type of issue.

59

Regular expression
A regular expression defining the pattern for the issue. This regular expression is applied to
all comments in the source code. Each match of the expression is considered to match the
issue type.
Priority
Each issue type is assigned a priority. The priority can be used to order and filter the
displayed issues in the issue tool.
Color
The color used to mark the issue in the source code (if enabled). The color will be used to
mark the background of either only the issue text itself, or the entire code line depending on
the coloring option.
Show in issue tool
If enabled, any found issues of this type are listed in the issues tool. This option can be
disabled to cause an issue to only be marked in the source code with a special background
color if desired.
Show in procedure browser
If enabled, any found issues are shown as an entry in the procedure browser tool.

Editor - Session history

Allows to configure how the session history is recording changes.
Enable recording of history
Enable or disable the history session recording. When enabled, all the changes made to a file will be
recorded in the background in a database. A session is created when the IDE launch, and is closed when
the IDE quits. This is useful to rollback to a previous version of a file, or to find back a deleted or
corrupted file. It’s like a very powerful source backup tool, limited in time (by default one month of
recording). It’s not aimed to replace a real source versioning system like SVN or GIT. It’s
complementary to have finer change trace. The source code will be stored without encryption, so if you
are working on sensitive source code, be sure to have this database file in a secure location, or disable this
feature. It’s possible to define the session history database location using an IDE command-line switch.
Record change every X minutes
Change the interval between each silent recording (when editing). A file will be automatically recorded
when saving or closing it.
Record only changes to files smaller than X kilobytes
Change the maximum size (in kilobytes) of the files being recorded. This allow to exclude very big files
which could make the database grow a lot.
Keep all history
Keep all the history, the database is never purged. It will always grows, so it should be watched.
Keep maximum X sessions
After reaching the maximum number of sessions, the oldest session will be removed from the database.
Keep sessions for X days
After reaching the maximum number of days, the session will be removed from the database.

60

Compiler

This page allows to select additional compilers which should be available for compilation in the Compiler
Options . This allows switching between different compilers of the same version (like the x86 and x64
compilers) or even switching between different versions easily.
Any SpiderBasic compiler can be added here. The target processor of the selected compilers does not
have to match that of the default compiler, as long as the target operating system is the same. The list
displays the compiler version and path of the selected compilers.
The information used by the IDE (for code highlighting, auto complete, structure viewer) always comes
from the default compiler. The additional compilers are only used for compilation.

Compiler - Defaults

This page allows setting the default compiler options that will be used when you create a new source
code with the IDE.
For an explanation of the meaning of each field, see the Compiler Options .

61

Debugger

Settings for the internal Debugger, or the Standalone Debugger. The command-line debugger is
configured from the command-line only.
Debugger Type
Select the type of debugger you want to use when compiling from the IDE here.
Choose Warning level
Select the action that should be taken if the debugger issues a warning. The available options are:
Ignore Warnings: Warnings will be ignored without displaying anything.
Display Warnings: Warnings will be displayed in the error log and the source code line will be marked,
but the program continues to run.
Treat Warnings as Errors: A warning will be treated like an error.
Memorize debugger window positions
The same as the ”Memorize Window positions” for in the General section, but for all Debugger windows.
Keep all debugger windows on top
All debugger windows will be kept on top of all other windows, even from other applications.
Bring Debugger windows to front when one is focused
With this option set, focusing one window that belongs to the debugger of a file, all windows that belong
to the same debugging session will be brought to the top.
Display Timestamp in error log
Includes the time of the event in the error log.
Stop execution at program start
Each program will be started in an already halted mode, giving you the opportunity to start moving
step-by-step, right from the start of the program.
Stop execution before program end
Stops the program execution right before the executable would unload. This gives you a last chance to
use the debugging tools to examine Variables or Memory before the program ends.
Kill Program after an Error
If a program encounters an error, it will be directly ended and all debugger windows closed. This gives
the opportunity to directly modify the code again without an explicit ”Kill Program”, but there is no
chance to examine the program after an error.
Keep Error marks after program end
Does not remove the lines marked with errors when the program ends. This gives the opportunity to still
see where an error occurred while editing the code again.
The marks can be manually removed with the ”Clear error marks” command in the ”Error log” submenu
of the debugger menu.
Clear error log on each run
Clears the log window when you execute a program. This ensures that the log does not grow too big
(this option is also available with the command-line debugger selected).
Timeout for Debugger startup
Specifies the time in milliseconds how long the debugger will wait for a program to start up before giving
up. This timeout prevents the debugger from locking up indefinitely if the executable cannot start for
some reason.

62

Debugger - Individual Settings

This allows setting options for the individual debugger tools. The ”Display Hex values” options switch
between displaying Byte, Long and Word as decimal or hexadecimal values.

Debug Output Add Timestamp
Adds a timestamp to the output displayed from the Debug command.
Debug Output - Display debug output in the error log
With this option enabled, a Debug command in the code will not open the Debug Output window, but
instead show the output in the error log .
Debug Output Use custom font
A custom font can be selected here for the debug output window. This allows to specify a smaller font
for much output or a proportional one if this is desired.
Profiler - Start Profiler on program startup
Determines whether the profiler tool should start recording data when the program starts.
ASM Debugger Update Stack trace automatically
Updates the stack trace automatically on each step/stop you do. If disabled, a manual update button
will be displayed in the ASM window.
Memory Viewer Array view in one column only
If the memory area is displayed in array view, this option selects whether it should be multi-column
(with 16 bytes displayed in each column) or with only one column.

Debugger - Default Windows

The debugger tools you select on this page will automatically be opened each time you run a program
with enabled debugger.

63

Tools Panel

This allows configuring the internal tools that can be displayed in the side panel. Each tool that is in the
”Displayed Tools” list is displayed in the Panel on the side of the edit area. Each tool that is not listed
there is accessible from the Tools menu as a separate window.
Put only those tools in the side panel that you use very frequently, and put the most frequently used
first, as it will be the active one once you open the IDE.
By selecting a tool in either of the lists, you get more configuration options for that tool (if there are
any) in the ”Configuration” section below.
Here is an explanation of those tools that have special options:
Explorer
You can select between a Tree or List display of the file-system. You can also set whether the last
displayed directory should be remembered, or if the Source Path should be the default directory when
the IDE is started.
Procedure Browser
”Sort Procedures by Name” : sorts the list alphabetically (by default they are listed as they appear in
the code).
”Group Markers” : groups the ”;-” markers together.
”Display Procedure Arguments” : Displays the full declaration of each procedure in the list.
Variable Viewer
The ”Display Elements from all open sources” option determines whether the list should only include
items from this code, or from all open codes.
Furthermore you can select the type of items displayed in the Variable viewer.
Help Tool
”Open sidebar help on F1”: specifies whether to open the help tool instead of the separate help viewer
when F1 is pressed.

Tools panel - Options

Here you can customize the appearance of the Tools Panel a bit more. You can select the side on which
it will be displayed, a Font for its text, as well as a foreground and background color for the displayed
tools. The font and color options can be disabled to use the OS defaults instead.
Do not use colors/fonts for tools in external windows
If set, the color/font options only apply to the Tools displayed in the Panel, those that you open from
the Tools menu will have the default colors.

64

Automatically hide the Panel
To save space, the Panel will be hidden if the mouse is not over it. Moving the mouse to the side of the
IDE will show it again.
Milliseconds delay before hiding the Panel
Sets a timeout in ms, after which the Panel is hidden if you leave it with the mouse.

Import/Export

This section allows you to export the layout settings of the IDE in a platform independent format, which
allows you to import them again into the SpiderBasic IDE on another Operating System, or to share
your options with other PB users.
To export your settings, select what types of settings you want to include, select a filename and press the
”Save” button.
To import settings, select the filename and press ”Open”. You will then see the options that are included
in this file as enabled checkboxes. After selecting what you want to import, click the ”Import Settings”
button.
For the new settings to take effect, you have to first click the apply button.
Note: You can import the style files from the jaPBe Editor, but only the color settings will be imported.

65

Chapter 17

Command-line options for the IDE

The SpiderBasic IDE allows you to modify the paths and files being used from the command-line. This
allows you to create several shortcuts that start the IDE with different configurations for different users,
or for different projects.
There are also options for compiling SpiderBasic projects directly from the command-line. Building a
project from the command-line involves the same actions like at choosing the ’Build Target’ or ’Build all
Targets’ from the compiler menu .
General options:

/VERSION displays the IDE version and exits
/HELP or /? displays a description of the command -line
arguments

Options for launching the IDE:

/P <Preferences file > loads/saves all the configuration to/from
the given file

/T <Templates file > loads/saves the code templates from/to the
given file

/A <tools file > loads/saves the configuration of the
external tool from/to this file

/S <Source path > overwrites the "Source path" setting from
the preferences

/E <Explorer path > starts the Explorer tool with the given path
/L <Line number > moves the cursor to the given line number in
the last opened file

/H <HistoryDatabase > specify the file to use for the session
history database

/NOEXT disables the registering of the .sb
extension in the registry

/LOCAL puts all preferences in the SpiderBasic
directory instead of the user profile location

/PORTABLE the same as /LOCAL and /NOEXT combined

Options for building projects:

/BUILD <file > specifies the project file to build
/TARGET <target > specifies the target to build (the default
is to build all targets)

/QUIET hides all build messages except errors
/READONLY does not update the project file after
compiling (with new access time and build counters)

The default files for /P /T and /A are saved in the %APPDATA%\SpiderBasic\ directory on the system.

66

The /NOEXT command is useful when you have several different SpiderBasic versions at once (for
testing of beta versions for example), but want the .sb extension to be associated with only one of them.
The /PORTABLE command can be used to keep all configuration inside the local directory to easily
copy SpiderBasic to different computers (or run it from USB sticks for example).
Example:

1 SpiderBasic.exe Example.sb /PORTABLE

You can also put the filenames of source files to load on the command-line. You can even specify
wildcards for them (so with ”*.sb” you can load a whole directory).

67

Part III

Language Reference

68

Chapter 18

Working with different number bases

(Note: These examples use the ^ symbol to mean ’raised to the power of’ - this is only for convenience in
this document, SpiderBasic does not currently have a power-of operator! Use the SpiderBasic command
Pow() from the ”Math” Library instead.)

Introduction

A number base is a way of representing numbers, using a certain amount of possible symbols per digit.
The most common you will know is base 10 (a.k.a. decimal), because there are 10 digits used (0 to 9),
and is the one most humans can deal with most easily.
The purpose of this page is to explain different number bases and how you can work with them. The
reason for this is that computers work in binary (base 2) and there are some cases where it is
advantageous to understand this (for example, when using logical operators, bit masks, etc).

Overview of number bases

Decimal System

Think of a decimal number, and then think of it split into columns. We’ll take the example number
1234. Splitting this into columns gives us:

1 2 3 4

Now think of what the headings for each column are. We know they are units, tens, hundreds and
thousands, laid out like this:

1000 100 10 1
1 2 3 4

We can see that the number 1234 is made up out of

1*1000=1000
+ 2* 100= 200
+ 3* 10= 30
+ 4* 1= 4
Total =1234

If we also look at the column headings, you’ll see that each time you move one column to the left we
multiply by 10, which just so happens to be the number base. Each time you move one column to the
right, you divide by 10. The headings of the columns can be called the weights, since to get the total

69

number we need to multiply the digits in each column by the weight. We can express the weights using
indices. For example 10 ^2 means ’10 raised to the power of two’ or 1*10*10 (=100). Similarly, 10 ^4
means 1*10*10*10*10 (=10000). Notice the pattern that whatever the index value is, is how many times
we multiply the number being raised. 10 ^0 means 1 (since we multiply by 10 no times). Using negative
numbers shows that we need to divide, so for example 10 ^-2 means 1/10/10 (=0.01). The index values
make more sense when we give each column a number - you’ll often see things like ’bit 0’ which really
means ’binary digit in column 0’.

In this example , ^ means raised to the power of, so 10^2 means 10
raised to the power of 2.

Column number 3 2 1 0
Weight (index type) 10^3 10^2 10^1 10^0
Weight (actual value) 1000 100 10 1
Example number (1234) 1 2 3 4

A few sections ago we showed how to convert the number 1234 into its decimal equivalent. A bit
pointless, since it was already in decimal but the general method can be shown from it - so this is how to
convert from any number to its decimal value:

B = Value of number base

1) Separate the number in whatever base you have into it’s columns.
For

example , if we had the value ’abcde’ in our fictional number base
’B’,

the columns would be: a b c d e

2) Multiply each symbol by the weight for that column (the weight
being

calculated by ’B’ raised to the power of the column number):
a * B^4 = a * B * B * B * B
b * B^3 = b * B * B * B
c * B^2 = c * B * B
d * B^1 = d * B
e * B^0 = e

3) Calculate the total of all those values. By writing all those
values in their

decimal equivalent during the calculations , it becomes far easier
to see the

result and do the calculation (if we are converting into decimal).

Converting in the opposite direction (from decimal to the number base ’B’) is done using division
instead of multiplication:

1) Start with the decimal number you want to convert (e.g. 1234).

2) Divide by the target number base (’B’) and keep note of the result
and the

remainder.

3) Divide the result of (2) by the target number base (’B’) and keep
note of

the result and the remainder.

4) Keep dividing like this until you end up with a result of 0.

5) Your number in the target number base is the remainders written in
the order

most recently calculated to least recent. For example , your number
would be

70

the remainders of the steps in this order 432.

More specific examples will be given in the sections about the specific number bases.

Binary System

Everything in a computer is stored in binary (base 2, so giving symbols of ’0’ or ’1’) but working with
binary numbers follows the same rules as decimal. Each symbol in a binary number is called a bit, short
for binary digit. Generally, you will be working with bytes (8-bit), words (16-bit) or longwords (32-bit)
as these are the default sizes of SpiderBasic’s built in types. The weights for a byte are shown:

(^ means ’raised to the power of’, number base is 2 for binary)
Bit/column number 7 6 5 4 3 2 1 0
Weight (index) 2^7 2^6 2^5 2^4 2^3 2^2 2^1 2^0
Weight (actual value) 128 64 32 16 8 4 2 1

So, for example, if we had the number 00110011 (Base 2), we could work out the value of it like this:

0 * 128
+ 0 * 64
+ 1 * 32
+ 1 * 16
+ 0 * 8
+ 0 * 4
+ 1 * 2
+ 1 * 1
= 51

An example of converting back would be if we wanted to write the value 69 in binary. We would do it
like this:

69 / 2 = 34 r 1 ^
34 / 2 = 17 r 0 /|\
17 / 2 = 8 r 1 |
8 / 2 = 4 r 0 | Read remainders in this direction
4 / 2 = 2 r 0 |
2 / 2 = 1 r 0 |
1 / 2 = 0 r 1 |

(Stop here since the result of the last divide was 0)

Read the remainders backwards to get the value in binary = 1000101

Another thing to consider when working with binary numbers is the representation of negative numbers.
In everyday use, we would simply put a negative symbol in front of the decimal number. We cannot do
this in binary, but there is a way (after all, SpiderBasic works mainly with signed numbers, and so must
be able to handle negative numbers). This method is called ’twos complement’ and apart from all the
good features this method has (and won’t be explained here, to save some confusion) the simplest way to
think of it is the weight of the most significant bit (the MSb is the bit number with the highest weight,
in the case of a byte, it would be bit 7) is actually a negative value. So for a two’s complement system,
the bit weights are changed to:

(^ means ’raised to the power of’, number base is 2 for binary)
Bit/column number 7 6 5 4 3 2 1 0
Weight (index) -2^7 2^6 2^5 2^4 2^3 2^2 2^1 2^0
Weight (actual value) -128 64 32 16 8 4 2 1

and you would do the conversion from binary to decimal in exactly the same way as above, but using the
new set of weights. So, for example, the number 10000000 (Base 2) is -128, and 10101010 (Base 2) is -86.

71

To convert from a positive binary number to a negative binary number and vice versa, you invert all the
bits and then add 1. For example, 00100010 would be made negative by inverting -> 11011101 and
adding 1 -> 11011110.
This makes converting from decimal to binary easier, as you can convert negative decimal numbers as
their positive equivalents (using the method shown above) and then make the binary number negative at
the end.
Binary numbers are written in SpiderBasic with a percent symbol in front of them, and obviously all the
bits in the number must be a ’0’ or a ’1’. For example, you could use the value %110011 in SpiderBasic
to mean 51. Note that you do not need to put in the leading ’0’s (that number would really be
%00110011) but it might help the readability of your source if you put in the full amount of bits.

Hexadecimal System

Hexadecimal (for base 16, symbols ’0’-’9’ then ’A’-’F’) is a number base which is most commonly used
when dealing with computers, as it is probably the easiest of the non-base 10 number bases for humans
to understand, and you do not end up with long strings of symbols for your numbers (as you get when
working in binary).
Hexadecimal mathematics follows the same rules as with decimal, although you now have 16 symbols per
column until you require a carry/borrow. Conversion between hexadecimal and decimal follows the same
patterns as between binary and decimal, except the weights are in multiples of 16 and divides are done
by 16 instead of 2:

Column number 3 2 1 0
Weight (index) 16^3 16^2 16^1 16^0
Weight (actual value) 4096 256 16 1

Converting the hexadecimal value BEEF (Base 16) to decimal would be done like this:

B * 4096 = 11 * 4096
+ E * 256 = 14 * 256
+ E * 16 = 14 * 16
+ F * 1 = 15 * 1
= 48879

And converting the value 666 to hexadecimal would be done like this:

666 / 16 = 41 r 10 ^
41 / 16 = 2 r 9 /|\ Read digits in this direction ,
remembering to convert
2 / 16 = 0 r 2 | to hex digits where required

(Stop here , as result is 0)
Hexadecimal value of 666 is 29A

The really good thing about hexadecimal is that it also allows you to convert to binary very easily. Each
hexadecimal digit represents 4 bits, so to convert between hexadecimal and binary, you just need to
convert each hex digit to 4 bits or every 4 bits to one hex digit (and remembering that 4 is an equal
divisor of all the common lengths of binary numbers in a CPU). For example:

Hex number 5 9 D F 4E
Binary value 0101 1001 1101 1111 01001110

When using hexadecimal values in SpiderBasic, you put a dollar sign in front of the number, for example
$BEEF.

72

Chapter 19

Break : Continue

Syntax

Break

Description

Break provides the ability to exit during any iteration, for the following loops: Repeat , For , ForEach
and While .

Example

1 For k=0 To 10
2 If k=5
3 Break ; Will exit directly from the For/Next loop
4 EndIf
5 Debug k
6 Next

Syntax

Continue

Description

Continue provides the ability to skip straight to the end of the current iteration (bypassing any code in
between) in the following loops: Repeat , For , ForEach , and While .

Example

1 For k=0 To 10
2 If k=5
3 Continue ; Will skip the ’Debug 5’ and go directly to the next

iteration
4 EndIf
5 Debug k
6 Next

73

Chapter 20

Using the command line compiler

Introduction

The command line compiler is located in the subdirectory ’Compilers\’ from the SpiderBasic folder. The
easier way to access this is to add this directory in the windows PATH variable, which will give access to
all the commands of this directory at all times. The Linux/OS X switches equivalent are also accepted
on Windows to ease script creation across all platforms.

Command switches

/? (-h, –help): display a quick help about the compiler.
/COMMENTED (-c, –commented): create a commented javascript output file.
/DEBUGGER (-d, –debugger): enable the debugger support.
/OUTPUT (-o, –output) ”filename”: output name for the created web, iOS or Android app.
/JAVASCRIPT (-js, –javascript) ”filename.js”: name of the created javascript file.
/LIBRARYPATH (-lp, –librarypath) ”path”: path of the SpiderBasic dependencies.
/COPYLIBRARIES (-cl, –copylibraries) ”path”: copy the SpiderBasic dependencies to the specified local
path.
/RESOURCEDIRECTORY (-rd, –resourcedirectory) ”path”: the directory where all the app resources
are located.
/OPTIMIZEJS (-z, –optimizejs): creates an optimized javascript output, including needed javascript. A
recent Java JRE needs to be installed to have this option working. The most recent JRE version can be
found here: https://java.com/download.
/ICON (-n, –icon) \”filename.png\”: icon to display in the browser tab. Has to be in PNG image format.
/APPNAME (-an, –appname): set the app name.
/APPVERSION (-av, –appversion): set the app version.
/APPPERMISSION (-ap, –apppermission) ”permission”: add a permission to the app (it can be
specified several time). Available permissions:
- geolocation: add GPS access and other location API support to the app.
/KEEPAPPDIR (-ka, –keepappdir): don’t delete Cordova temp directory after app creation (iOS and
Android only)
/REBUILDAPPDIR (-ra, –rebuildappdir) \”path\”: rebuild the specified Cordova temp app directory
(iOS and Android only)
/STARTUPIMAGE (-si, –startupimage) ”image.png”: set the startup image to use when launching the
app (iOS and Android only)
/PACKAGEID (-pi, –packageid) ”com.yourcompany.appid”: set the package id for the app (iOS and
Android only)
/IAPKEY (-ik, –iapkey) ”MIIB......AQAB”: set InAppPurchase API key for the Android app
/DEPLOY (-p, –deploy): automatically deploy the app on USB connected device (iOS and Android
only)
/FULLSCREEN (-fs, –fullscreen): activate fullscreen mode for the app (iOS and Android only)

74

https://java.com/download

/ORIENTATION (-w, –orientation) ”orientation”: set the app orientation (iOS and Android only):
- ”any”: the app can be in landscape or portrait mode, depending of the device orientation (default).
- ”portrait”: the app will always launch in portait mode.
- ”landscape”: the app will always launch in landscape mode.
/ANDROID: create an Android app (Windows only).
/JDK ”jdk path”: set the path to full JDK 1.8+ used to build Android app (Windows only).
/RESIDENT (-r, –resident) ”filename”: create a resident file specified by the filename.
/QUIET (-q, –quiet): Disable all unnecessary text output, very useful when using another editor.
/STANDBY (-sb, –standby): Loads the compiler in memory and wait for external commands (editor,
scripts...). More information about using this flag is available in the file ’CompilerInterface.txt’ from the
SpiderBasic ’SDK’ directory.
/IGNORERESIDENT (-ir, –ignoreresident) ”Filename” : Doesn’t load the specified resident file when
the compiler starts. It’s mostly useful when updating a resident which already exists, so it won’t load it.
/CONSTANT (-t, –constant) Name=Value: Creates the specified constant with the given expression.
Example: ’sbcompiler test.sb /CONSTANT MyConstant=10’. The constant #MyConstant will be
created on the fly with a value of 10 before the program gets compiled.
/SUBSYSTEM (-s, –subsystem) ”Name”: Uses the specific subsystem to replace a set of internal
functions. For more information, see subsystems .
/CHECK (-k, –check) : Check the syntax only, doesn’t create or launch the executable.
/PREPROCESS (-pp, –preprocess) ”Filename”: Preprocess the source code and write the output in the
specified ”Filename”. The processed file is a single file with all macro expanded, compiler directive
handled and multiline resolved. This allows an easier parsing of a SpiderBasic source file, as all is
expanded and is available in a flat file format. No comments are included by default, but the flag
/COMMENTED can be used to have all untouched original source as comments and allow comments
processing. The preprocessed file can be recompiled as any other SpiderBasic source file to create the
final output.
/LANGUAGE (-g, –language) ”Language”: uses the specified language for the compiler.
/VERBOSE (-vb, –verbose): Displays more information when creating an app.
/VERSION (-v, –version): Displays the compiler version.

Example

CLI > sbcompiler sourcecode.sb /OUTPUT "test.html"

The compiler will compile the source code to test.html.
CLI > sbcompiler sourcecode.sb /DEBUGGER /OUTPUT "test.html"

The compiler will compile the source code to test.html with debugger support.

75

Chapter 21

Compiler Directives

Syntax

CompilerIf <constant expression >
...

[CompilerElseIf]
...

[CompilerElse]
...

CompilerEndIf

Description

If the <constant expression> result is true, the code inside the CompilerIf will be compiled, else it will
be totally ignored. It’s useful when building multi-OSes programs to customize some programs part by
using OS specific functions. The And and Or Keywords can be used in <constant expression> to
combine multiple conditions.

Example

1 CompilerIf #PB_Compiler_OS = #PB_OS_Linux And #PB_Compiler_Processor
= #PB_Processor_x86

2 ; some Linux and x86 specific code.
3 CompilerEndIf

Syntax

CompilerSelect <numeric constant >
CompilerCase <numeric constant >

...
[CompilerDefault]

...
CompilerEndSelect

Description

Works like a regular Select : EndSelect except that only one numeric value is allowed per case. It will
tell the compiler which code should be compiled. It’s useful when building multi-OSes programs to
customize some programs part by using OS specific functions.

76

Example

1 CompilerSelect #PB_Compiler_OS
2 CompilerCase #PB_OS_AmigaOS
3 ; some Amiga specific code
4 CompilerCase #PB_OS_Linux
5 ; some Linux specific code
6 CompilerEndSelect

Syntax

CompilerError <string constant >

Description

Generates an error, as if it was a syntax error and display the associated message. It can be useful when
doing specialized routines, or to inform a source code is not available on an particular OS.

Example

1 CompilerIf #PB_Compiler_OS = #PB_OS_AmigaOS
2 CompilerError "AmigaOS isn ’t supported , sorry."
3 CompilerElse
4 CompilerError "OS supported , you can now comment me."
5 CompilerEndIf

Syntax

EnableExplicit
DisableExplicit

Description

Enables or disables the explicit mode. When enabled, all the variables which are not explicitly declared
with Define , Global , Protected or Static are not accepted and the compiler will raise an error. It can
help to catch typo bugs.

Example

1 EnableExplicit
2
3 Define a
4
5 a = 20 ; Ok, as declared with ’Define ’
6 b = 10 ; Will raise an error here

Syntax

77

EnableJS
DisableJS

Description

Enables or disables the inline javascript. Inside this block, the line are left untouched and put as is in
the generated code. See the inline javascript section for more information.

Example

1 ;
2 ;
3 Test = 10
4
5 EnableJS
6 v_test = 20
7 DisableJS
8
9 Debug Test ; Will be 20

Reserved Constants

The SpiderBasic compiler has several reserved constants which can be useful to the programmer:

#PB_Compiler_OS : Determines on which OS the compiler is currently
running. It can be one of the following values:
#PB_OS_Windows : The compiler is creating Windows executable

(PureBasic)
#PB_OS_Linux : The compiler is creating Linux executable

(PureBasic)
#PB_OS_AmigaOS : The compiler is creating AmigaOS executable

(PureBasic)
#PB_OS_MacOS : The compiler is creating OS X executable

(PureBasic)
#PB_OS_Web : The compiler is generating a JavaScript file

(SpiderBasic)

#PB_Compiler_Processor : Determines the processor type for which the
output is created. It can be one of the following:
#PB_Processor_x86 : x86 processor architecture (also called

IA -32 or x86 -32) (PureBasic)
#PB_Processor_x64 : x86 -64 processor architecture (also called

x64 , AMD64 or Intel64) (PureBasic)
#PB_Processor_PowerPC : PowerPC processor architecture (PureBasic)
#PB_Processor_mc68000 : Motorola 68000 processor architecture

(PureBasic)
#PB_Processor_JavaScript : JavaScript output (SpiderBasic)

#PB_Compiler_App : Determines the app type for which the output is
created. It can be one of the following:
#PB_App_Web : Web app
#PB_App_Android: Android app
#PB_App_IOS : IOS app

#PB_Compiler_Date : Current date , at the compile time , in the
SpiderBasic date

78

format.
#PB_Compiler_File : Full path and name of the file being
compiled , useful for debug purpose.

#PB_Compiler_FilePath : Full path of the file being compiled , useful
for debug purpose.

#PB_Compiler_Filename : Filename (without path) of the file being
compiled , useful for debug purpose.

#PB_Compiler_Line : Line number of the file being compiled ,
useful for debug purpose.

#PB_Compiler_Procedure: Current procedure name , if the line is inside
a procedure

.
#PB_Compiler_Module : Current module name , if the line is inside a
module

.
#PB_Compiler_Version : Compiler version , in integer format in the
form ’420’ for 4.20.

#PB_Compiler_Home : Full path of the SpiderBasic directory , can
be useful to locate include files

#PB_Compiler_Debugger : Set to 1 if the runtime debugger is enabled ,
set to 0 else. When a final project is created

is created , the debugger is always disabled
(this constant will be 0).

#PB_Compiler_InlineJavaScript : Set to 1 if the if the code is inside
a EnableJS/DisableJS block.

#PB_Compiler_EnableExplicit: Set to 1 if the executable is compiled
with enable explicit support , set to 0 else.

#PB_Compiler_IsMainFile : Set to 1 if the file being compiled is
the main file , set to 0 else.

#PB_Compiler_IsIncludeFile : Set to 1 if the file being compiled has
been included by another file , set to 0 else.

79

Chapter 22

Compiler Functions

Syntax

Size = SizeOf(Type)

Description

SizeOf can be used to find out the size of any complex Structure (it does not work on the simple built-in
types such as word and float), Interface or even variables . This can be useful in many areas such as
calculating memory requirements for operations, using API commands, etc.

Example

1 Structure Person
2 Name.s
3 ForName.s
4 Age.w
5 EndStructure
6
7 Debug "The size of my friend is "+Str(Sizeof(Person))+" bytes" ; will

be 10 (4+4+2)
8
9 John.Person\Name = "John"
10
11 Debug SizeOf(John) ; will be also 10

Note: if a variable and a structure have the same name, the structure will have the priority over the
variable.

Syntax

Index = OffsetOf(Structure\Field)
Index = OffsetOf(Interface\Function ())

Description

80

OffsetOf can be used to find out the index of a Structure field or the index of an Interface function.
When used with an Interface , the function index is the memory offset, so it will be
IndexOfTheFunction*SizeOf(Integer).

Example

1 Structure Person
2 Name.s
3 ForName.s
4 Age.w
5 EndStructure
6
7 Debug OffsetOf(Person\Age) ; will be 8 as a string is 4 byte in memory
8 ; (16 with the 64-bit compiler , as a

string is 8 bytes there)
9
10
11 Interface ITest
12 Create ()
13 Destroy(Flags)
14 EndInterface
15
16 Debug OffsetOf(ITest\Destroy ()) ; will be 4

Syntax

Type = TypeOf(Object)

Description

TypeOf can be used to find out the type of a variable , or a structure field . The type can be one of the
following values:

#PB_Byte
#PB_Word
#PB_Long
#PB_String
#PB_Structure
#PB_Float
#PB_Character
#PB_Double
#PB_Quad
#PB_List
#PB_Array
#PB_Integer
#PB_Map
#PB_Ascii
#PB_Unicode

Example

1 Structure Person
2 Name.s
3 ForName.s

81

4 Age.w
5 EndStructure
6
7 If TypeOf(Person\Age) = #PB_Word
8 Debug "Age is a ’Word ’"
9 EndIf
10
11 Surface.f
12 If TypeOf(Surface) = #PB_Float
13 Debug "Surface is a ’Float ’"
14 EndIf

Syntax

Result = Subsystem(<constant string expression >)

Description

Subsystem can be used to find out if a subsystem is in use for the program being compiled. The name of
the subsystem is case sensitive.

Example

1 CompilerIf Subsystem("OpenGL")
2 Debug "Compiling with the OpenGL subsystem"
3 CompilerEndIf

Syntax

Result = Defined(Name , Type)

Description

Defined checks if a particular object of a code source like structure , interface , variables etc. is already
defined or not. The ’Name’ parameter has to be specified without any extra decoration (ie: without the
’#’ for a constant , without ’()’ for an array , a list or a map).
The ’Type’ parameter can be one of the following values:

#PB_Constant
#PB_Variable
#PB_Array
#PB_List
#PB_Map
#PB_Structure
#PB_Interface
#PB_Procedure
#PB_Function
#PB_OSFunction
#PB_Label
#PB_Prototype
#PB_Module
#PB_Enumeration

82

Example

1 #PureConstant = 10
2
3 CompilerIf Defined(PureConstant , #PB_Constant)
4 Debug "Constant ’PureConstant ’ is declared"
5 CompilerEndIf
6
7 Test = 25
8
9 CompilerIf Defined(Test , #PB_Variable)
10 Debug "Variable ’Test ’ is declared"
11 CompilerEndIf

Syntax

CopyStructure (*Source , *Destination , Structure)

Description

CopyStructure copy the memory of a structured memory area to another. This is useful when dealing
with dynamic allocations, through pointers . Every fields will be duplicated, even array , list , and map .
The destination structure will be automatically cleared before doing the copy, it’s not needed to call
ClearStructure before CopyStructure. Warning: the destination should be a valid structure memory
area, or a cleared memory area. If the memory area is not cleared, it could crash, as random values will
be used by the clear routine. There is no internal check to ensures that the structure match the two
memory area. This function is for advanced users only and should be used with care.

Example

1 Structure People
2 Name$
3 LastName$
4 Map Friends$ ()
5 Age.l
6 EndStructure
7
8 Student.People\Name$ = "Paul"
9 Student\LastName$ = "Morito"
10 Student\Friends$("Tom") = "Jones"
11 Student\Friends$("Jim") = "Doe"
12
13 CopyStructure(@Student , @StudentCopy.People , People)
14
15 Debug StudentCopy\Name$
16 Debug StudentCopy\LastName$
17 Debug StudentCopy\Friends$("Tom")
18 Debug StudentCopy\Friends$("Jim")

Syntax

ClearStructure (*Pointer , Structure)

83

Description

ClearStructure free the memory of a structured memory area. This is useful when the structure contains
strings, array, list or map which have been allocated internally by SpiderBasic. ’Structure’ is the name of
the structure which should be used to perform the clearing. All the fields will be set to zero, even native
type like long, integer etc. There is no internal check to ensures the structure match the memory area.
This function is for advanced users only and should be used with care.

Example

1 Structure People
2 Name$
3 LastName$
4 Age.l
5 EndStructure
6
7 Student.People\Name$ = "Paul"
8 Student\LastName$ = "Morito"
9 Student\Age = 10
10
11 ClearStructure(@Student , People)
12
13 ; Will print empty strings as the whole structure has been cleared.

All other fields have been reset to zero.
14 ;
15 Debug Student\Name$
16 Debug Student\LastName$
17 Debug Student\Age

Syntax

Bool(<boolean expression >)

Description

Bool can be used to evaluate a boolean expression outside of regular conditional operator like If, While,
Until etc. If the boolean expression is true, it will return #True, otherwise it will return #False.

Example

1 Hello$ = "Hello"
2 World$ = "World"
3
4 Debug Bool(Hello$ = "Hello") ; will print 1
5 Debug Bool(Hello$ <> "Hello" Or World$ = "World") ; will print 1

84

Chapter 23

Data

Introduction

SpiderBasic allows the use of Data, to store predefined blocks of information inside of your program.
This is very useful for default values of a program (language string for example) or, in a game, to define
the sprite way to follow (precalculated).
DataSection must be called first to indicate a data section follow. This means all labels and data
component will be stored in the data section of the program, which has a much faster access than the
code section. Data will be used to enter the data. EndDataSection must be specified if some code follows
the data declaration. One of good stuff is you can define different Data sections in the code without any
problem. Restore and Read command will be used to retrieve the data.

Commands

Syntax

DataSection

Description

Start a data section.

Syntax

EndDataSection

Description

End a data section.

Syntax

Data.TypeName

85

Description

Defines data. The type can only be a native basic type (integer, long, word, byte, ascii, unicode, float,
double, quad, character, string). Any number of data can be put on the same line, each one delimited
with a comma ’,’.

Example

1 Data.l 100, 200, -250, -452, 145
2 Data.s "Hello", "This", "is ", "What ?"

Syntax

Restore label

Description

This keyword is useful to set the start indicator for the Read to a specified label. All labels used for this
purpose should be placed within the DataSection because the data is treated as a separate block from
the program code when it is compiled and may become disassociated from a label if the label were
placed outside of the DataSection.

Example

1 Restore StringData
2 Read.s MyFirstData$
3 Read.s MySecondData$
4
5 Restore NumericalData
6 Read.l a
7 Read.l b
8
9 Debug MyFirstData$
10 Debug a
11
12 DataSection
13 NumericalData:
14 Data.l 100, 200, -250, -452, 145
15
16 StringData:
17 Data.s "Hello", "This", "is ", "What ?"
18 EndDataSection

Syntax

Read[.<type >] <variable >

Description

Read the next available data. The next available data can be changed by using the Restore command.
By default, the next available data is the first data declared. The type of data to read is determined by
the type suffix. The default type will be used if it is not specified.

86

Chapter 24

Debugger keywords in SpiderBasic

Overview

Following is a list of special keywords to control the debugger from your source code. There is also a
Debugger library which provides further functions to modify the behavior of the debugger should it be
present.

Syntax

CallDebugger

Description

This invokes the ”debugger” and freezes the program immediately. This will invoke the web browser
debugger.

Syntax

Debug <expression > [, DebugLevel]

Description

Display the DebugOutput window and the result inside it. The expression can be any valid SpiderBasic
expression, from numeric to string. An important point is the Debug command and its associated
expression is totally ignored (not compiled) when the debugger is deactivated.
Note: This is also true, if you’re using complete command lines after Debug (e.g. Debug
LoadImage(1,”test.bmp”)). They will not be compiled with disabled debugger!
This means this command can be used to trace easily in the program without having to comment all the
debug commands when creating the final executable.
The ’DebugLevel’ is the level of priority of the debug message. All normal debug message (without
specifying a debug level) are automatically displayed. When a level is specified then the message will be
only displayed if the current DebugLevel (set with the following DebugLevel command) is equals or
above this number. This allows hierarchical debug mode, by displaying more and more precise
information in function of the used DebugLevel.

Syntax

87

DebugLevel <constant expression >

Description

Set the current debug level for the ’Debug’ message.
Note: The debug level is set at compile time, which means you have to put the DebugLevel command
before any other Debug commands to be sure it affects them all.

Syntax

DisableDebugger

Description

This will disable the debugger checks on the source code which follow this command.

Syntax

EnableDebugger

Description

This will enable the debugger checks on the source code which follow this command (if the debugger was
previously disabled with DisableDebugger).
Note: EnableDebugger doesn’t have an effect, if the debugger is completely disabled in the IDE.

88

Chapter 25

Define

Syntax

Define.<type > [<variable > [= <expression >], <variable > [=
<expression >], ...]

Description

If no <variables> are specified, Define is used to change the default type for future untyped variables
(including procedure parameters and interface method parameters). The initial default type is integer
(.i). Each variable can have a default value directly assigned to it.
Define may also be used with arrays , lists and maps .

Example

1 d = e + f
2 Define.w
3 a = b + c

d, e and f will be created as integer type variables, since there was no type specified. a, b and c will be
signed word typed (.w) as no type is specified and the default type had been changed to the word type.
If variables are specified, Define only declares these variables as ”defined type” and will not change the
default type. If you don’t assign a value to the variables at this time, the value will be 0.

Example

1 Define.b a, b = 10, c = b*2, d ; these 4 variables will be byte typed
(.b)

Syntax

Define <variable >.<type > [= <expression >] [, <variable >.<type > [=
<expression >], ...]

Description

Alternative possibility for the variable declaration using Define.

89

Example

1 Define MyChar.c
2 Define MyLong.l
3 Define MyWord.w
4
5 Debug SizeOf(MyChar) ; will print 2
6 Debug SizeOf(MyLong) ; will print 4
7 Debug SizeOf(MyWord) ; will print 2

90

Chapter 26

Dim

Syntax

Dim name.<type >(<expression >, [<expression >], ...)

Description

Dim is used to create new arrays (the initial value of each element will be zero). An array in SpiderBasic
can be of any types, including structured , and user defined types. Once an array is defined it can be
resized with ReDim. Arrays are dynamically allocated which means a variable or an expression can be
used to size them. To view all commands used to manage arrays, see the Array library.
When you define a new array, please note that it will have one more element than you used as
parameter, because the numbering of the elements in SpiderBasic (like in other BASIC’s) starts at
element 0. For example when you define Dim(10) the array will have 11 elements, elements 0 to 10. This
behavior is different for static arrays in structures .
The new arrays are always locals, which means Global or Shared commands have to be used if an array
declared in the main source need to be used in procedures. It is also possible to pass an array as
parameter to a procedure - by using the keyword Array. It will be passed ”by reference” (which means,
that the array will not be copied, instead the functions in the procedure will manipulate the original
array).
To delete the content of an array and release its used memory during program flow, call FreeArray() .
If Dim is used on an existing array, it will reset its contents to zero.
For fast swapping of array contents the Swap keyword is available.
Note: Array bound checking is only done when the runtime Debugger is enabled.

Example

1 Dim MyArray (41)
2 MyArray (0) = 1
3 MyArray (1) = 2

Example: Multidimensional array

1 Dim MultiArray.b(NbColumns , NbLines)
2 MultiArray (10, 20) = 10
3 MultiArray (20, 30) = 20

91

Example: Array as procedure parameter

1 Procedure fill(Array Numbers (1), Length) ; the 1 stays for the
number of dimensions in the array

2 For i = 0 To Length
3 Numbers(i) = i
4 Next
5 EndProcedure
6
7 Dim Numbers (10)
8 fill(Numbers (), 10) ; the array A() will be passed as parameter here
9
10 Debug Numbers (5)
11 Debug Numbers (10)

Syntax

ReDim name.<type >(<expression >, [<expression >], ...)

Description

ReDim is used to ’resize’ an already declared array while preserving its content. The new size can be
larger or smaller, but the number of dimension of the array can not be changed.
If ReDim is used with a multi-dimension array, only its last dimension can be changed.

Example

1 Dim MyArray.l(1) ; We have 2 elements
2 MyArray (0) = 1
3 MyArray (1) = 2
4
5 ReDim MyArray (4) ; Now we want 5 elements
6 MyArray (2) = 3
7
8 For k = 0 To 2
9 Debug MyArray(k)
10 Next

92

Chapter 27

Enumerations

Syntax

Enumeration [name] [<constant > [Step <constant >]]
#Constant1
#Constant2 [= <constant >]
#Constant3
...

EndEnumeration

Description

Enumerations are very handy to declare a sequence of constants quickly without using fixed numbers.
The first constant found in the enumeration will get the number 0 and the next one will be 1 etc. It’s
possible to change the first constant number and adjust the step for each new constant found in the
enumeration. If needed, the current constant number can be altered by affecting with ’=’ the new
number to the specified constant. As Enumerations only accept integer numbers, floats will be rounded
to the nearest integer.
A name can be set to identify an enumeration and allow to continue it later. It is useful to group objects
altogether while declaring them in different code place.
For advanced user only: the reserved constant #PB_Compiler_EnumerationValue store the next value
which will be used in the enumeration. It can be useful to get the last enumeration value or to chain two
enumerations.

Example: Simple enumeration

1 Enumeration
2 #GadgetInfo ; Will be 0
3 #GadgetText ; Will be 1
4 #GadgetOK ; Will be 2
5 EndEnumeration

Example: Enumeration with step

1 Enumeration 20 Step 3
2 #GadgetInfo ; Will be 20
3 #GadgetText ; Will be 23
4 #GadgetOK ; Will be 26
5 EndEnumeration

93

Example: Enumeration with dynamic change

1 Enumeration
2 #GadgetInfo ; Will be 0
3 #GadgetText = 15 ; Will be 15
4 #GadgetOK ; Will be 16
5 EndEnumeration

Example: Named enumeration

1 Enumeration Gadget
2 #GadgetInfo ; Will be 0
3 #GadgetText ; Will be 1
4 #GadgetOK ; Will be 2
5 EndEnumeration
6
7 Enumeration Window
8 #FirstWindow ; Will be 0
9 #SecondWindow ; Will be 1
10 EndEnumeration
11
12 Enumeration Gadget
13 #GadgetCancel ; Will be 3
14 #GadgetImage ; Will be 4
15 #GadgetSound ; Will be 5
16 EndEnumeration

Example: Getting next enumeration value

1 Enumeration
2 #GadgetInfo ; Will be 0
3 #GadgetText ; Will be 1
4 #GadgetOK ; Will be 2
5 EndEnumeration
6
7 Debug "Next enumeration value: " + #PB_Compiler_EnumerationValue ;

will print 3

94

Chapter 28

For : Next

Syntax

For <variable > = <expression1 > To <expression2 > [Step <constant >]
...

Next [<variable >]

Description

For : Next is used to create a loop within a program with the given parameters. At each loop the
<variable> value is increased by a 1, (or of the ”Step value” if a Step value is specified) and when the
<variable> value is above the <expression2> value, the loop stop.
With the Break command its possible to exit the For : Next loop at any moment, with the Continue
command the end of the current iteration can be skipped.
The For : Next loop works only with integer values, at the expressions as well at the Step constant. The
Step constant can also be negative.

Example

1 For k = 0 To 10
2 Debug k
3 Next

In this example, the program will loop 11, time (0 to 10), then quit.

Example

1 For k = 10 To 1 Step -1
2 Debug k
3 Next

In this example, the program will loop 10 times (10 to 1 backwards), then quit.

Example

1 a = 2
2 b = 3

95

3 For k = a+2 To b+7 Step 2
4 Debug k
5 Next k

Here, the program will loop 4 times before quitting, (k is increased by a value of 2 at each loop, so the k
value is: 4-6-8-10). The ”k” after the ”Next” indicates that ”Next” is ending the ”For k” loop. If another
variable, is used the compiler will generate an error. It can be useful to nest several ”For/Next” loops.

Example

1 For x=0 To 10
2 For y=0 To 5
3 Debug "x: " + x + " y: " + y
4 Next y
5 Next x

Note: Be aware, that in SpiderBasic the value of <expression2> (’To’ value) can also be changed inside
the For : Next loop. This can lead to endless loops when wrongly used.

96

Chapter 29

ForEach : Next

Syntax

ForEach List() Or Map()
...

Next [List() Or Map()]

Description

ForEach loops through all elements in the specified list or map starting from the first element up to the
last. If the list or the map is empty, ForEach : Next exits immediately. To view all commands used to
manage lists, please click here . To view all commands used to manage maps, please click here .
When used with list, it’s possible to delete or add elements during the loop. As well it’s allowed to
change the current element with ChangeCurrentElement() . After one of the mentioned changes the next
loop continues with the element following the current element.
With the Break command its possible to exit the ForEach : Next loop at any moment, with the
Continue command the end of the current iteration can be skipped.

Example: list

1 NewList Number ()
2
3 AddElement(Number ())
4 Number () = 10
5
6 AddElement(Number ())
7 Number () = 20
8
9 AddElement(Number ())
10 Number () = 30
11
12 ForEach Number ()
13 Debug Number () ; Will output 10, 20 and 30
14 Next

Example: Map

1 NewMap Country.s()
2

97

3 Country("US") = "United States"
4 Country("FR") = "France"
5 Country("GE") = "Germany"
6
7 ForEach Country ()
8 Debug Country ()
9 Next

98

Chapter 30

General Rules

SpiderBasic has established rules which never change. These are:

Comments

Comments are marked by ;. All text entered after ; is ignored by the compiler.

Example

1 If a = 10 ; This is a comment to indicate something.

Keywords

All keywords are used for general things inside SpiderBasic, like creating arrays (Dim) or lists
(NewList), or controlling the program flow (If : Else : EndIf). They are not followed by the brackets ’()’,
which are typically for SpiderBasic functions.

Example

1 If a = 1 ; If , Else and EndIf are keywords; while ’a = 1’
2 ... ; is a variable used inside an expression.
3 Else
4 ...
5 EndIf

Keywords are regularly described in the chapters on the left side of the index page in the reference
manual.

Functions

All functions must be followed by a (or else it will not be considered as a function, (even for null
parameter functions).

99

Example

1 EventWindow () ; it is a function.
2 EventWindow ; it is a variable.

Functions are regularly included in the SpiderBasic ”Command libraries”, described on the right side of
the index page in the reference manual.

Constants

All constants are preceded by #. They can only be declared once in the source and always keep their
predefined values. (The compiler replaces all constant names with their corresponding values when
compiling the executable.)

Example

1 #Hello = 10 ; it is a constant.
2 Hello = 10 ; it is a variable.

Labels

All labels must be followed by a : (colon). Label names may not contain any operators (+,-,...) as well
special characters (ß,ä,ö,ü,...). When defined in a procedure , the label will be only available in this
procedure.

Example

1 I_am_a_label:

Expressions

An expression is something which can be evaluated. An expression can mix any variables, constants, or
functions, of the same type. When you use numbers in an expression, you can add the Keyword $ sign in
front of it to mean a hexadecimal number, or a Keyword % sign to mean a binary number. Without
either of those, the number will be treated as decimal. Strings must be enclosed by inverted commas.

Example

1 a = a + 1 + (12 * 3)
2
3 a = a + WindowHeight(#Window) + b/2 + #MyConstant
4
5 If a <> 12 + 2
6 b + 2 >= c + 3
7 EndIf
8
9 a$ = b$ + "this is a string value" + c$
10
11 Foo = Foo + $69 / %1001 ; Hexadecimal and binary number usage

100

Concatenation of commands

Any number of commands can be added to the same line by using the : option.

Example

1 If IsCrazy = 0 : Debug "Not Crazy" : Else : Debug "Crazy" : EndIf

Line continuation

If the line contains a big expression, it can be split on several lines. A split line has to end with one of
the following operator: plus (+), comma (,), or (‖), And, Or, Xor.

Example

1 Text$ = "Very very very very long text" + #LF$ +
2 "another long text" + #LF$ +
3 " and the end of the long text"
4
5 OpenWindow (0,
6 10, 10,
7 320, 200,
8 "Image viewer")

Typical words in this manual

Words used in this manual:

<variable> : a basic variable.
<expression> : an expression as explained above.
<constant> : a numeric constant.
<label> : a program label.
<type> : any type, (standard or structured).

Others

- In this guide, all topics are listed in alphabetical order to decrease any search time.
- Return values of commands are always Integer if no other type is specified in the Syntax line of the
command description.
- In the SpiderBasic documentation are used the terms ”commands” and ”functions” as well - this is one
and the same, independently of a return-value. If a value is returned by the command or function, you
can read in the related command description.

101

Chapter 31

Global

Syntax

Global[.<type >] <variable[.<type >]> [= <expression >] [, ...]

Description

Global provides the ability for variables to be defined as global, i.e., variables defined as such may then
be accessed within a Procedure . In this case the command Global must be called for the according
variables, before the declaration of the procedure. Each variable may have a default value directly
assigned to it. If a type is specified for a variable after Global, the default type is changed through the
use of this declaration. Global may also be used with arrays , lists and maps .
In order to use local variables within a procedure, which have the same name as global variables, take a
look at the Protected and Static keywords.

Example: With variables

1 Global a.l, b.b, c, d = 20
2
3 Procedure Change ()
4 Debug a ; Will be 10 as the variable is global
5 EndProcedure
6
7 a = 10
8 Change ()

Example: With array

1 Global Dim Array (2)
2
3 Procedure Change ()
4 Debug Array (0) ; Will be 10 as the array is global
5 EndProcedure
6
7 Array (0) = 10
8 Change ()

102

Example: With default type

1 ; ’Angle ’ and ’Position ’ will be a float , as they didn ’t have a
specified type

2 ;
3 Global.f Angle , Length.b, Position

103

Chapter 32

Handles and Numbers

Numbers

All created objects are identified by an arbitrary number (which is not the object’s handle, as seen
below). In this manual, these numbers are marked as #Number (for example, each gadget created have
a #Gadget number).
The numbers you assign to them do not need to be constants, but they need to be unique for each object
in your program (an image can get the same number as a gadget, because these are different types of
objects). These numbers are used to later access these objects in your program.
For example, the event handling functions return these numbers:

1 EventGadget ()
2 EventMenu ()
3 EventWindow ()

Handles

All objects also get a unique number assigned to them by the system. These identifiers are called
handles. Sometimes, a SpiderBasic function doesn’t need the number as argument, but the handle. In
this manual, such things are mentioned, as an ID.

Example

1 ImageGadget(#Gadget , x, y, Width , Height , ImageID [, Flags])
2 ; #Gadget needs to be the number you want to assign to the Gadget
3 ; ImageID needs to a handle to the image.

To get the handle to an object, there are special functions like:

1 FontID ()
2 GadgetID ()
3 ImageID ()
4 ThreadID ()
5 WindowID ()

Also, most of the functions that create these objects also return this handle as a result, if they were
successful. This is only the case if #PB_Any was not used to create the object. If #PB_Any is used,
these commands return the object number that was assigned by PB for them, not the handle.

104

Example

1 GadgetHandle = ImageGadget (...)

105

Chapter 33

If : Else : EndIf

Syntax

If <expression >
...

[ElseIf <expression >]
...

[Else]
...

EndIf

Description

The If structure is used to achieve tests, and/or change the programmes direction, depending on whether
the test is true or false. ElseIf optional command is used for any number of additional tests if the
previous test was not true. The Else optional command is used to execute a part of code, if all previous
tests were false. Any number of If structures may be nested together.

Example

1 If a=10
2 Debug "a=10"
3 Else
4 Debug "a<>10"
5 EndIf

Example

1 If a=10 And b>=10 Or c=20
2 If b=15
3 Debug "b=15"
4 Else
5 Debug "Other possibility"
6 EndIf
7 Else
8 Debug "Test failure"
9 EndIf

106

Chapter 34

Import : EndImport

Syntax

Import "cordova command"
EndImport

Description

For advanced programmers. Import : EndImport allows to easy invoke a cordova command at build
time. It’s an Android and iOS functionnality only. The command has to start with ’cordova’ followed by
any supported parameters.

Example

1 ; Will addd the camera plugin to the app , so it can be accessed with
inline javascript

2 ;
3 Import "cordova plugin add cordova -plugin -camera"
4 EndImport

107

Chapter 35

Includes Functions

Syntax

IncludeFile "Filename"

Description

IncludeFile will always include the specified source file, at the current place in the code (even if
XIncludeFile has been called for this file before).

Example

1 IncludeFile "Sources\myfile.sb" ; This file will be inserted in the
current code.

This command is useful, if you want to split your source code into several files, to be able to reuse parts
e.g. in different projects.

Syntax

XIncludeFile "Filename"

Description

XIncludeFile is similar to IncludeFile excepts it avoids to include the same file twice.

Example

1 XIncludeFile "Sources\myfile.sb" ; This file will be inserted.
2 XIncludeFile "Sources\myfile.sb" ; This file will be ignored along

with all subsequent calls.

This command is useful, if you want to split your source code into several files, to be able to reuse parts
e.g. in different projects.

108

Syntax

IncludePath "path"

Description

IncludePath will specify a default path for all files included after the call of this command. This can be
very handy when you include many files which are in the same directory.

Example

1 IncludePath "Sources\Data"
2 IncludeFile "Sprite.sb"
3 XIncludeFile "Music.sb"

109

Chapter 36

Inline Javascript

Introduction

SpiderBasic allows you to include raw JavaScript directly into the source code. To activate the inline
JavaScript input, you can use the compiler directives EnableJS and DisableJS . Another way is to put ’ !’
(exclamation mark) at the beginning of the line, and the whole line will be put as is in the generated
source.
Please note than the JavaScript code isn’t checked by the SpiderBasic compiler, so if a syntax error
occurs in this code, it will be reported in the browser when executing the code.
The IDE coloring can also be wrong sometimes with JavaScript input, but it won’t impact the generated
code.

Rules

Here are the naming rules to use when accessing SpiderBasic items: - JavaScript variable name is the
same in lowercase with a ’v_’ prefix. It’s the same for local variable, global variable and function
parameter.

Example

1 MyVariable = 10
2 !v_myvariable ++;
3 Debug MyVariable

- JavaScript pointer name is the same in lowercase with a ’p_’ prefix. It’s the same for local pointer,
global pointer and function parameter.

Example

1 *Pointer = 10
2 !p_pointer = 20;
3 Debug *Pointer

- JavaScript procedure name is the same in lowercase with a ’f_’ prefix.

Example

110

1 Procedure MyProcedure ()
2 Debug "Hello world"
3 EndProcedure
4
5 ; Call in SpiderBasic
6 MyProcedure ()
7
8 ; Call using Javascript
9 !f_myprocedure ();

- JavaScript static variable name in procedure is ’so_procedurename$v_variablename’. Example

1 Procedure myProcedure ()
2 Static myStatic =0
3
4 ! so_myprocedure$v_mystatic += 12;
5
6 Debug myStatic
7 EndProcedure
8
9 myProcedure ()

- JavaScript module name is the same in lowercase and using the ’$’ sign to access module items.
Example

1 DeclareModule MyModule
2 MyModuleVariable.i
3 EndDeclareModule
4
5 Module MyModule
6 EndModule
7
8 !mymodule$v_mymodulevariable = 12
9 Debug MyModule :: MyModuleVariable

111

Chapter 37

Interfaces

Syntax

Interface <name > [Extends <name >]
<Method[.<type >]()>
...

EndInterface

Description

Interfaces are used to access Object Oriented modules, such as COM (Component Object Model) or
DirectX dynamic libraries (DLL). These types of libraries are becoming more and more common in
Windows, and through the use of interfaces, the ability to access these modules easily (and without any
performance hit) is realized. It also introduces the necessary basis for Object Oriented programming
within SpiderBasic, but the use of interfaces requires some advanced knowledge. Most of the standard
Windows interfaces have already been implemented within a resident file and this allows direct use of
these objects.
The optional Extends parameter may be used to extend another interface with new functions (Theses
functions are commonly called ’methods’ in Object Oriented (OO) languages such as C++ or Java). All
functions contained within the extended interface are then made available within the new interface and
will be placed before the new functions. This is useful in order to do basic inheritance of objects.
Arrays can be passed as parameters using the Array keyword, lists using the List keyword and maps
using the Map keyword.
A return type may be defined in the interface declaration by adding the type after the method.
SizeOf may be used with Interfaces in order to get the size of the interface and OffsetOf may be used to
retrieve the index of the specified function.
Note: The concept of objects, and the capability provided within SpiderBasic for their use, has been
developed for, and mainly targeted towards, experienced programmers. However, an understanding of
these concepts and capabilities are in no way a prerequisite for creating professional software or games.

Example: Basic example of object call

1 ; In order to access an external object (within a DLL for example),
2 ; the objects ’ interface must first be declared:
3
4 Interface MyObject
5 Move(x,y)
6 MoveF(x.f,y.f)
7 Destroy ()
8 EndInterface
9

112

10 ; CreateObject is the function which creates the object , from the DLL ,
11 ; whose interface has just been defined.
12 ; Create the first object ...
13 ;
14 Object1.MyObject = MyCreateObject ()
15
16 ; And the second one.
17 ;
18 Object2.MyObject = MyCreateObject ()
19
20 ; Then the functions which have just been defined , may
21 ; be used , in order to act upon the desired object.
22 ;
23 Object1\Move(10, 20)
24 Object1\Destroy ()
25
26 Object2\MoveF (10.5 , 20.1)
27 Object2\Destroy ()

Example: Example with ’Extends’

1 ; Define a basic Cube interface object.
2 ;
3 Interface Cube
4 GetPosition ()
5 SetPosition(x)
6 GetWidth ()
7 SetWidth(Width)
8 EndInterface
9
10 Interface ColoredCube Extends Cube
11 GetColor ()
12 SetColor(Color)
13 EndInterface
14
15 Interface TexturedCube Extends Cube
16 GetTexture ()
17 SetTexture(TextureID)
18 EndInterface
19
20 ; The interfaces for 3 different objects have now been defined , these

objects include:
21 ;
22 ; - ’Cube ’ which has the: Get/SetPosition () and Get/SetWidth ()

functions.
23 ; - ’ColoredCube ’ which has the: Get/SetPosition (), Get/SetWidth ()

and Get/SetColor () functions.
24 ; - ’TexturedCube ’ which has the: Get/SetPosition (), Get/SetWidth ()

and Get/SetTexture () functions.
25 ;

113

Chapter 38

Licenses for the SpiderBasic
applications

All components used by SpiderBasic are under very permissive licenses which allow free use in
commercial application. Ensures to put this file in you documentation if you distribute your application.
This program makes use of the following components:

Using MIT License

spark-md5 (https://github.com/satazor/js-spark-md5)
js-crc (https://github.com/emn178/js-crc)
js-sha3 (https://github.com/emn178/js-sha3)
canvas-toBlob.js (https://github.com/eligrey/canvas-toBlob.js)
FileSaver.js (https://github.com/eligrey/FileSaver.js)
interact.js (https://github.com/taye/interact.js)
jDataView (https://github.com/jDataView/jDataView)
jquery (https://github.com/jquery/jquery)
jquery-ui (https://github.com/jquery/jquery-ui)
jquery-injectCSS (https://github.com/kajic/jquery-injectCSS)
jquery-blockui (https://github.com/malsup/blockui)
pako (https://github.com/nodeca/pako)
PaperJS (http://paperjs.org)
PixiJS (https://github.com/pixijs/pixijs)
Platform.js (https://github.com/bestiejs/platform.js)
PreloadJS (https://createjs.com/preloadjs)
put-js (https://github.com/put-dev/put-js)
seedrandom (https://github.com/davidbau/seedrandom)
SoundJS (https://www.createjs.com/soundjs)
sql.js (https://sql.js.org)
wgxpath (https://github.com/google/wicked-good-xpath)
xdate (https://github.com/arshaw/xdate)
xregexp (https://github.com/slevithan/xregexp)

MIT License:

Permission is hereby granted , free of charge , to any person obtaining a
copy of this software and associated documentation files (the

"Software"),
to deal in the Software without restriction , including without

limitation

114

https://github.com/satazor/js-spark-md5
https://github.com/emn178/js-crc
https://github.com/emn178/js-sha3
https://github.com/eligrey/canvas-toBlob.js
https://github.com/eligrey/FileSaver.js
https://github.com/taye/interact.js
https://github.com/jDataView/jDataView
https://github.com/jquery/jquery
https://github.com/jquery/jquery-ui
https://github.com/kajic/jquery-injectCSS
https://github.com/malsup/blockui
https://github.com/nodeca/pako
http://paperjs.org
https://github.com/pixijs/pixijs
https://github.com/bestiejs/platform.js
https://createjs.com/preloadjs
https://github.com/put-dev/put-js
https://github.com/davidbau/seedrandom
https://www.createjs.com/soundjs
https://sql.js.org
https://github.com/google/wicked-good-xpath
https://github.com/arshaw/xdate
https://github.com/slevithan/xregexp

the rights to use , copy , modify , merge , publish , distribute , sublicense ,
and/or sell copies of the Software , and to permit persons to whom the

Software
is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included
in all

copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND , EXPRESS
OR IMPLIED ,

INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY , FITNESS
FOR A PARTICULAR

PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE

FOR ANY CLAIM , DAMAGES OR OTHER LIABILITY , WHETHER IN AN ACTION OF
CONTRACT , TORT OR

OTHERWISE , ARISING FROM , OUT OF OR IN CONNECTION WITH THE SOFTWARE OR
THE USE OR OTHER

DEALINGS IN THE SOFTWARE.

Using BSD License

Dojo (https://github.com/dojo/dojo)

BSD License:

Copyright (c) 2005 -2018 , The JS Foundation
All rights reserved.

Redistribution and use in source and binary forms , with or without
modification , are permitted provided that the following conditions are

met:

* Redistributions of source code must retain the above copyright
notice , this
list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright
notice ,
this list of conditions and the following disclaimer in the
documentation
and/or other materials provided with the distribution.

* Neither the name of the JS Foundation nor the names of its
contributors
may be used to endorse or promote products derived from this
software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND

ANY EXPRESS OR IMPLIED WARRANTIES , INCLUDING , BUT NOT LIMITED TO, THE
IMPLIED

WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE

LIABLE
FOR ANY DIRECT , INDIRECT , INCIDENTAL , SPECIAL , EXEMPLARY , OR

CONSEQUENTIAL

115

https://github.com/dojo/dojo

DAMAGES (INCLUDING , BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR

SERVICES; LOSS OF USE , DATA , OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER

CAUSED AND ON ANY THEORY OF LIABILITY , WHETHER IN CONTRACT , STRICT
LIABILITY ,

OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE

OF THIS SOFTWARE , EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Using BSD License

Forge (https://github.com/digitalbazaar/forge)

BSD License:

Copyright (c) 2010, Digital Bazaar , Inc.
All rights reserved.

Redistribution and use in source and binary forms , with or without
modification , are permitted provided that the following conditions are

met:
* Redistributions of source code must retain the above copyright

notice , this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright

notice , this list of conditions and the following disclaimer in
the

documentation and/or other materials provided with the
distribution.
* Neither the name of Digital Bazaar , Inc. nor the

names of its contributors may be used to endorse or promote
products

derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND

ANY EXPRESS OR IMPLIED WARRANTIES , INCLUDING , BUT NOT LIMITED TO, THE
IMPLIED

WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL DIGITAL BAZAAR BE LIABLE FOR ANY
DIRECT , INDIRECT , INCIDENTAL , SPECIAL , EXEMPLARY , OR CONSEQUENTIAL

DAMAGES
(INCLUDING , BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR

SERVICES;
LOSS OF USE , DATA , OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED

AND
ON ANY THEORY OF LIABILITY , WHETHER IN CONTRACT , STRICT LIABILITY , OR

TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE

OF THIS
SOFTWARE , EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

116

https://github.com/digitalbazaar/forge

Using Apache License 2.0

localForage (https://github.com/localForage/localForage)
mouseTrap (https://github.com/ccampbell/mousetrap)

Apache License 2.0:

Apache License
Version 2.0, January 2004

http ://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE , REPRODUCTION , AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use ,
reproduction ,

and distribution as defined by Sections 1 through 9 of this
document.

"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all
other entities that control , are controlled by, or are under

common
control with that entity. For the purposes of this definition ,
"control" means (i) the power , direct or indirect , to cause the
direction or management of such entity , whether by contract or
otherwise , or (ii) ownership of fifty percent (50%) or more of the
outstanding shares , or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.

"Source" form shall mean the preferred form for making
modifications ,

including but not limited to software source code , documentation
source , and configuration files.

"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form , including but
not limited to compiled object code , generated documentation ,
and conversions to other media types.

"Work" shall mean the work of authorship , whether in Source or
Object form , made available under the License , as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).

"Derivative Works" shall mean any work , whether in Source or
Object

form , that is based on (or derived from) the Work and for which
the

editorial revisions , annotations , elaborations , or other
modifications

represent , as a whole , an original work of authorship. For the
purposes

117

https://github.com/localForage/localForage
https://github.com/ccampbell/mousetrap

of this License , Derivative Works shall not include works that
remain

separable from , or merely link (or bind by name) to the
interfaces of,

the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship , including
the original version of the Work and any modifications or

additions
to that Work or Derivative Works thereof , that is intentionally
submitted to Licensor for inclusion in the Work by the copyright

owner
or by an individual or Legal Entity authorized to submit on

behalf of
the copyright owner. For the purposes of this definition ,

"submitted"
means any form of electronic , verbal , or written communication

sent
to the Licensor or its representatives , including but not limited

to
communication on electronic mailing lists , source code control

systems ,
and issue tracking systems that are managed by, or on behalf of ,

the
Licensor for the purpose of discussing and improving the Work , but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a

Contribution."

"Contributor" shall mean Licensor and any individual or Legal
Entity

on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of
this License , each Contributor hereby grants to You a perpetual ,
worldwide , non -exclusive , no-charge , royalty -free , irrevocable
copyright license to reproduce , prepare Derivative Works of ,
publicly display , publicly perform , sublicense , and distribute the
Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of
this License , each Contributor hereby grants to You a perpetual ,
worldwide , non -exclusive , no-charge , royalty -free , irrevocable
(except as stated in this section) patent license to make , have

made ,
use , offer to sell , sell , import , and otherwise transfer the Work ,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross -claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement , then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the

118

Work or Derivative Works thereof in any medium , with or without
modifications , and in Source or Object form , provided that You
meet the following conditions:

(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and

(c) You must retain , in the Source form of any Derivative Works
that You distribute , all copyright , patent , trademark , and
attribution notices from the Source form of the Work ,
excluding those notices that do not pertain to any part of
the Derivative Works; and

(d) If the Work includes a "NOTICE" text file as part of its
distribution , then any Derivative Works that You distribute

must
include a readable copy of the attribution notices contained
within such NOTICE file , excluding those notices that do not
pertain to any part of the Derivative Works , in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation , if provided along with the Derivative Works;

or ,
within a display generated by the Derivative Works , if and
wherever such third -party notices normally appear. The

contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute , alongside
or as an addendum to the NOTICE text from the Work , provided
that such additional attribution notices cannot be construed
as modifying the License.

You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use , reproduction , or distribution of Your modifications , or
for any such Derivative Works as a whole , provided Your use ,
reproduction , and distribution of the Work otherwise complies with
the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state
otherwise ,

any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License , without any additional terms or conditions.
Notwithstanding the above , nothing herein shall supersede or

modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the
trade

names , trademarks , service marks , or product names of the
Licensor ,

except as required for reasonable and customary use in describing
the

119

origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing , Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS ,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND , either express or
implied , including , without limitation , any warranties or

conditions
of TITLE , NON -INFRINGEMENT , MERCHANTABILITY , or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this

License.

8. Limitation of Liability. In no event and under no legal theory ,
whether in tort (including negligence), contract , or otherwise ,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing , shall any Contributor be
liable to You for damages , including any direct , indirect ,

special ,
incidental , or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill ,
work stoppage , computer failure or malfunction , or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof , You may choose to offer ,
and charge a fee for , acceptance of support , warranty , indemnity ,
or other liability obligations and/or rights consistent with this
License. However , in accepting such obligations , You may act only
on Your own behalf and on Your sole responsibility , not on behalf
of any other Contributor , and only if You agree to indemnify ,
defend , and hold each Contributor harmless for any liability
incurred by , or claims asserted against , such Contributor by

reason
of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

120

Chapter 39

Macros

Syntax

Macro <name > [(Parameter [, ...])]
...

EndMacro

Description

Macros are a very powerful feature, mainly useful for advanced programmers. A macro is a placeholder
for some code (one keyword, one line or even many lines), which will be directly inserted in the source
code at the place where a macro is used. In this, it differs from procedures , as the procedures doesn’t
duplicate the code when they are called.
The Macro : EndMacro declaration must be done before the macro will be called for the first time.
Because macros will be completely replaced by their related code at compile time, they are not local to a
procedure.
A macro can not have a return type nor typed parameters. When a macro has some parameters, they
are replaced in the macro code by the literal expression which is passed to the called macro. No
evaluation is done as this stage, which is very important to understand: the evaluation of a line is
started once all the macros found on this line are expanded.
The macros are divided into two categories: simple (without parameters) and complex (with parameters,
needs the parentheses when calling it). When using no parameters, it’s possible to replace any word with
another word (or any expression). The macros can’t be called recursively.

Example: Simple macro

1 Macro MyNot
2 Not
3 EndMacro
4
5 a = 0
6 If MyNot a ; Here the line will be expanded to : ’If Not a’
7 Debug "Ok"
8 EndIf

When using parameters, it’s possible to do very flexible macros. The special concatenation character ’#’
can be used to create new labels or keyword by mixing the macro code and the parameter expression
(spaces are not accepted between each words by the concatenation character). It’s also possible to define
default values for parameters, so they can be omitted when calling the macro.

121

Example: Macro with parameter

1 Macro UMsgBox(Body)
2 MessageRequester(UCase(Body), #PB_MessageRequester_Ok)
3 EndMacro
4
5 Text$ = "Hello World"
6 UMsgBox("-"+Text$+"-") ; Here the line will be expanded like that:
7 ; ’MessageRequester(UCase ("-"+ Text$ +"-"),

#PB_MessageRequester_Ok)’

Example: Macro with default parameter

1 Macro UMsgBox(Body = "Ha , no body specified")
2 MessageRequester(UCase(Body), #PB_MessageRequester_Ok)
3 EndMacro
4
5 UMsgBox () ; Here the line will be expanded like that:
6 ; ’MessageRequester(UCase("Ha , no body specified "),

#PB_MessageRequester_Ok)’

Example: Macro parameter concatenation

1 Macro XCase(Type , Text)
2 Type#Case(Text)
3 EndMacro
4
5 Debug XCase(U, "Hello")
6 Debug XCase(L, "Hello")

Example: Advanced multi-line macro

1 Macro DoubleQuote
2 "
3 EndMacro
4
5 Macro Assert(Expression)
6 CompilerIf #PB_Compiler_Debugger ; Only enable assert in debug mode
7 If Expression
8 Debug "Assert (Line " + #PB_Compiler_Line + "): " +

DoubleQuote#Expression#DoubleQuote
9 EndIf
10 CompilerEndIf
11 EndMacro
12
13 Assert (10 <> 10) ; Will display nothing
14 Assert (10 <> 15) ; Should display the assert

Syntax

UndefineMacro <name >

122

Description

UndefineMacro allows to undefine a previously defined macro, and redefine it in a different manner.
Once the macro has been undefined, it is no more available for use.

Example: Undefine macro

1 Macro Test
2 Debug "1"
3 EndMacro
4
5 Test ; Call the macro
6
7 UndefineMacro Test ; Undefine the macro , it no more exists
8
9 Macro Test ; Now we can redefine the macro
10 Debug "2"
11 EndMacro
12
13 Test ; Call the macro

Syntax

MacroExpandedCount

Description

MacroExpandedCount allows to get the expanded count (number of time the macro has been
expanded/called). It can be useful to generate unique identifiers in the same macro for every expansion
(like label, procedure name etc.).

Example: Expanded count

1 Macro Test
2 Debug MacroExpandedCount
3 EndMacro
4
5 Test ; Call the macro
6 Test ; Call the macro
7 Test ; Call the macro

123

Chapter 40

Pointers and memory access

Pointers

Using pointers is possible by placing one ’*’ (asterix) in front of the name of a variable , array , list or
map . A pointer is a placeholder for a memory address which is usually associated to a structure .

Example

1 *MyScreen.Screen = OpenScreen (0, 320, 200, 8, 0)
2 mouseX = *MyScreen\MouseX ; Assuming the Screen structure contains a

MouseX field

There are only three valid methods to set the value of a pointer:
- Get the result from a function (as shown in the above example)
- Copy the value from another pointer
- Find the address of a variable, procedure or label (as shown below)
Note: unlike C/C++, in SpiderBasic the ’*’ is always part of the item name. Therefore ’*ptr’ and ’ptr’
are two different variables. ’ptr’ is a variable (regular one) storing a value, ’*ptr’ is another variable of
pointer type storing an address.
Pointers and memory size
Because pointers receive only addresses as values, the memory size of a pointer is the space allowing to
store an absolute address of the processor:
- On 32-bit processors the address space is limited to 32-bit, so a pointer takes 32-bit (4 bytes, like a
’long’) in memory
- On 64-bit processors it takes 64-bit (8 bytes, like a ’quad’) in memory, because the absolute address is
on a 64-bit range.
As a consequence the type of a pointer depends of the CPU address mode, (long’ on 32-bit CPU and
quad’ on 64-bit one for example), so a pointer is a variable of type pointer.
It results from this that assigning a native type to a pointer (*Pointer.l, *Pointer.b ...) makes no sense.
Note:
- Every time a memory address needs to be stored in a variable, it should be done through a pointer.
This guaranteed address integrity at the compilation time whatever the CPU address mode is.
Pointers and structures
By assigning a structure to a pointer (for example *MyPointer.Point) it allows to access any memory
address in a structured way (with the operator \’).

Example: Pointers and variables

1 Structure Point

124

2 x.l
3 y.l
4 EndStructure
5
6 Define Point1.Point , Point2.Point
7
8 *CurrentPoint.Point = @Point1 ; Pointer declaration , associated to a

structure and initialized with Point1 ’s address
9 *CurrentPoint \x = 10 ; Assign value 10 to Point1\x
10
11 *CurrentPoint.Point = @Point2 ; move to Point2 ’s address
12 *CurrentPoint \x = 20 ; Assign value 20 to Point2\x
13
14 Debug Point1\x
15 Debug Point2\x

Example: Pointers and array

1 Structure Point
2 x.l
3 y.l
4 EndStructure
5
6 Define Point1.Point , Point2.Point
7
8 Dim *Points.Point (1) ; 2 slots array
9 *Points (0) = @Point1 ; Assign the first point variable to the first

array slot
10 *Points (1) = @Point2 ; Same for second
11
12 *Points (0)\x = 10 ; Modify the variables through the pointers
13 *Points (1)\x = 20 ;
14
15 Debug Point1\x
16 Debug Point2\x

Pointers allow to move, to read and to write easily in memory. Furthermore they allow programmers to
reach big quantities of data without supplementary cost further to data duplication. Copying a pointer
is much faster.
Pointers are also available in structures, for more information see the structures chapter .
Pointers Arithmetic
In SpiderBasic, a pointer can’t be moved by adding or substracting a number. A pointer is only allowed
on a structured element. A memory buffer allocated with AllocateMemory() is not allowed.
AllocateStructure() needs to be used if a pointer is a required on a dynamically allocated element.

Address of variable

To find the address of a variable in your code, you use the ’at’ symbol (@). A common reason for using
this is when you want to pass a structured type variable to a procedure . You must pass a pointer to this
variable as you cannot pass structured variables directly.

Example

125

1 Structure People
2 Age.b
3 Name$
4 EndStructure
5
6 Procedure SetInfo (* People.People)
7 *People\Age = 69
8 *People\Name$ = "John"
9 EndProcedure
10
11 Define.People King
12
13 SetInfo(@King)
14
15 Debug King\Age
16 Debug King\Name$

Address of procedure

The most common reason to get the address of a procedure is when dealing with callbacks. Many
commands in SpiderBasic requires callbacks as parameter, like BindEvent() , BindGadgetEvent() ,
ReadFile() etc. The address of a procedure is got using the ’at’ symbol (@) in front of the procedure
name including the ’()’.

Example

1 Procedure ButtonHandler ()
2 Debug "Button click event on gadget #" + EventGadget ()
3 EndProcedure
4
5 OpenWindow (0, 100, 100, 200, 50, "Click test", #PB_Window_SystemMenu)
6 ButtonGadget (0, 10, 10, 180, 30, "Click me")
7
8 BindGadgetEvent (0, @ButtonHandler ())

126

Chapter 41

Module

Syntax

DeclareModule <name >
...

EndDeclareModule

Module <name >
...

EndModule

UseModule <name >
UnuseModule <name >

Description

Modules are an easy way to isolate code part from the main code, allowing code reuse and sharing
without risk of name conflict. In some other programming languages, modules are known as
’namespaces’. A module must have a DeclareModule section (which is the public interface) and an
associated Module section (which is the implementation). Only items declared in the DeclareModule
section will be accessible from outside the module. All the code put in the Module section will be kept
private to this module. Items from main code like procedures, variables etc. won’t be accessible inside
the module, even if they are global . A module can be seen as a blackbox, an empty code sheet where
item names can not conflict with the main code. It makes it easier to write specific code, as simple
names can be reused within each module without risk of conflict.
Items allowed in the DeclareModule section can be the following: procedure (only procedure declaration
allowed), structure, macro, variable, constant, enumeration, array, list, map and label.
To access a module item from outside the module, the module name has to be specified followed by the
’::’ separator. When explicitly specifying the module name, the module item is available everywhere in
the code source, even in another module. All items in the DeclareModule section can be automatically
imported into another module or in the main code using UseModule. In this case, if a module name
conflict, the module items won’t be imported and a compiler error will be raised. UnuseModule remove
the module items. UseModule is not mandatory to access a module item, but the module name needs to
be specified.
To share information between modules, a common module can be created and then used in every
modules which needs it. It’s the common way have global data available for all modules.
Default items available in modules are all SpiderBasic commands, structure and constants. Therefore
module items can not be named like internal SpiderBasic commands, structure or constants.
All code put inside DeclareModule and Module sections is executed like any other code when the
program flow reaches the module.
When the statements Define, EnableExplicit, EnableASM are used inside a module, they have no effect
outside the respective module, and vice versa.

127

Note: modules are not mandatory in SpiderBasic but are recommended when building big projects.
They help to build more maintainable code, even if it is slightly more verbose than module-free code.
Having a DeclareModule section make the module pretty much self-documented for use when reusing
and sharing it.

Example

1
2 ; Every items in this sections will be available from outside
3 ;
4 DeclareModule Ferrari
5 #FerrariName$ = "458 Italia"
6
7 Declare CreateFerrari ()
8 EndDeclareModule
9
10 ; Every items in this sections will be private. Every names can be

used without conflict
11 ;
12 Module Ferrari
13
14 Global Initialized = #False
15
16 Procedure Init() ; Private init procedure
17 If Initialized = #False
18 Initialized = #True
19 Debug "InitFerrari ()"
20 EndIf
21 EndProcedure
22
23 Procedure CreateFerrari ()
24 Init()
25 Debug "CreateFerrari ()"
26 EndProcedure
27
28 EndModule
29
30
31 Procedure Init() ; Main init procedure , doesn ’t conflict with the

Ferrari Init() procedure
32 Debug "Main init()"
33 EndProcedure
34
35 Init()
36
37 Ferrari :: CreateFerrari ()
38 Debug Ferrari :: #FerrariName$
39
40 Debug "------------------------------"
41
42 UseModule Ferrari ; Now import all public item directly in the main

program scope
43
44 CreateFerrari ()
45 Debug #FerrariName$

128

Example: With a common module

1
2 ; The common module , which will be used by others to share data
3 ;
4 DeclareModule Cars
5 Global NbCars = 0
6 EndDeclareModule
7
8 Module Cars
9 EndModule
10
11 ; First car module
12 ;
13 DeclareModule Ferrari
14 EndDeclareModule
15
16 Module Ferrari
17 UseModule Cars
18
19 NbCars +1
20 EndModule
21
22 ; Second car module
23 ;
24 DeclareModule Porche
25 EndDeclareModule
26
27 Module Porche
28 UseModule Cars
29
30 NbCars +1
31 EndModule
32
33 Debug Cars:: NbCars

129

Chapter 42

NewList

Syntax

NewList name.<type >()

Description

NewList allows to declare a new dynamic list. Each element of the list is allocated dynamically. There
are no element limits, so there can be as many as needed. A list can have any Variables standard or
structured type. To view all commands used to manage lists, see the List library.
The new list are always locals, which means Global or Shared commands have to be used if a list
declared in the main source need to be used in procedures. It is also possible to pass a list as parameter
to a procedure by using the keyword List.
For fast swapping of list contents the Swap keyword is available.

Example: Simple list

1 NewList MyList ()
2
3 AddElement(MyList ())
4 MyList () = 10
5
6 AddElement(MyList ())
7 MyList () = 20
8
9 AddElement(MyList ())
10 MyList () = 30
11
12 ForEach MyList ()
13 Debug MyList ()
14 Next

Example: List as procedure parameter

1 NewList Test()
2
3 AddElement(Test())
4 Test() = 1
5 AddElement(Test())

130

6 Test() = 2
7
8 Procedure DebugList(c, List ParameterList ())
9
10 AddElement(ParameterList ())
11 ParameterList () = 3
12
13 ForEach ParameterList ()
14 MessageRequester("List", Str(ParameterList ()))
15 Next
16
17 EndProcedure
18
19 DebugList (10, Test())

131

Chapter 43

NewMap

Syntax

NewMap name.<type >([Slots])

Description

NewMap allows to declare a new map, also known as hashtable or dictionary. It allows to quickly
reference an element based on a key. Each key in the map are unique, which means it can’t have two
distinct elements with the same key. There are no element limits, so there can be as many as needed. A
map can have any standard or structured type. To view all commands used to manage maps, see the
Map library.
When using a new key for an assignment, a new element is automatically added to the map. If another
element with the same key is already in the map, it will be replaced by the new one. Once an element as
been accessed or created, it becomes the current element of the map, and further access to this element
can be done without specify the key. This is useful when using structured map, as no more element
lookup is needed to access different structure field.
New maps are always locals by default, so Global or Shared commands have to be used if a map declared
in the main source need to be used in procedures. It is also possible to pass a map as parameter to a
procedure by using the keyword Map.
For fast swapping of map elements the Swap keyword is available.
The optional ’Slots’ parameter defines how much slots the map will have have to store its elements. The
more slots is has, the faster it will be to access an element, but the more memory it will use. It’s a
tradeoff depending of how many elements the map will ultimately contains and how fast the random
access should be. The default value is 512. This parameter has no impact about the number of elements
a map can contain.

Example: Simple map

1 NewMap Country.s()
2
3 Country("GE") = "Germany"
4 Country("FR") = "France"
5 Country("UK") = "United Kingdom"
6
7 Debug Country("FR")
8
9 ForEach Country ()
10 Debug Country ()
11 Next

132

Example: Map as procedure parameter

1 NewMap Country.s()
2
3 Country("GE") = "Germany"
4 Country("FR") = "France"
5 Country("UK") = "United Kingdom"
6
7 Procedure DebugMap(Map ParameterMap.s())
8
9 ParameterMap("US") = "United States"
10
11 ForEach ParameterMap ()
12 Debug ParameterMap ()
13 Next
14
15 EndProcedure
16
17 DebugMap(Country ())

Example: Structured map

1 Structure Car
2 Weight.l
3 Speed.l
4 Price.l
5 EndStructure
6
7 NewMap Cars.Car()
8
9 ; Here we use the current element after the new insertion
10 ;
11 Cars("Ferrari F40")\Weight = 1000
12 Cars()\Speed = 320
13 Cars()\Price = 500000
14
15 Cars("Lamborghini Gallardo")\Weight = 1200
16 Cars()\Speed = 340
17 Cars()\Price = 700000
18
19 ForEach Cars()
20 Debug "Car name: "+MapKey(Cars())
21 Debug "Weight: "+Str(Cars()\Weight)
22 Next

133

Chapter 44

Others Commands

Syntax

End [ExitCode]

Description

Ends the program execution correctly. If the application is a mobile application, it quits the app. If the
app runs in a browser, it will try to close the current window or tab (but can fail depending of the
browser).
’ExitCode’ is currently ignored.

Syntax

Swap <expression >, <expression >

Description

Swaps the value of the both expression, in an optimized way. The both <expression> have to be a
variable , array , list or a map element (structured or not) and have to be one of the SpiderBasic native
type like long (.l), quad (.q), string etc.

Example: Swapping of strings

1 Hello$ = "Hello"
2 World$ = "World"
3
4 Swap Hello$, World$
5
6 Debug Hello$+" "+World$

Example: Swapping of multi-dimensional arrays elements

1 Dim Array1 (5,5)
2 Dim Array2 (5,5)

134

3 Array1 (2,2) = 10 ; set initial contents
4 Array2 (3,3) = 20
5
6 Debug Array1 (2,2) ; will print 10
7 Debug Array2 (3,3) ; will print 20
8
9 Swap Array1 (2,2) , Array2 (3,3) ; swap 2 arrays elements
10
11 Debug "Array contents after swapping:"
12 Debug Array1 (2,2) ; will print 20
13 Debug Array2 (3,3) ; will print 10

135

Chapter 45

Procedures

Syntax

Procedure[.<type >] name(<parameter1 [.<type >]> [, <parameter2 [.<type >]
[= DefaultValue]>, ...])

...
[ProcedureReturn value]

EndProcedure

Description

A Procedure is a part of code independent from the main code which can have any parameters and it’s
own variables . In SpiderBasic, a recurrence is fully supported for the procedures and any procedure can
call it itself. At each call of the procedure the variables inside will start with a value of 0 (null). To
access main code variables, they have to be shared them by using Shared or Global keywords (see also
the Protected and Static keywords).
The last parameters can have a default value (need to be a constant expression), so if these parameters
are omitted when the procedure is called, the default value will be used.
Arrays can be passed as parameters using the Array keyword, lists using the List keyword and maps
using the Map keyword.
A procedure can return a value or a string if necessary. You have to set the type after Procedure and use
the ProcedureReturn keyword at any moment inside the procedure. A call of ProcedureReturn exits
immediately the procedure, even when its called inside a loop.
ProcedureReturn can’t be used to return an array , list or a map . For this purpose pass the array, the
list or the map as parameter to the procedure.
If no value is specified for ProcedureReturn, the returned value will be undefined.

Example: Procedure with a numeric variable as return-value

1 Procedure Maximum(nb1 , nb2)
2 If nb1 > nb2
3 Result = nb1
4 Else
5 Result = nb2
6 EndIf
7
8 ProcedureReturn Result
9 EndProcedure
10
11 Result = Maximum (15, 30)
12 Debug Result

136

Example: Procedure with a string as return-value

1 Procedure.s Attach(String1$, String2$)
2 ProcedureReturn String1$+" "+String2$
3 EndProcedure
4
5 Result$ = Attach("SpiderBasic", "Coder")
6 Debug Result$

Example: Parameter with default value

1 Procedure a(a, b, c=2)
2 Debug c
3 EndProcedure
4
5 a(10, 12) ; 2 will be used as default value for 3rd parameter
6 a(10, 12, 15)

Example: List as parameter

1 NewList Test.Point()
2
3 AddElement(Test())
4 Test()\x = 1
5 AddElement(Test())
6 Test()\x = 2
7
8 Procedure DebugList(c.l, List ParameterList.Point())
9
10 AddElement(ParameterList ())
11 ParameterList ()\x = 3
12
13 ForEach ParameterList ()
14 MessageRequester("List", Str(ParameterList ()\x))
15 Next
16
17 EndProcedure
18
19 DebugList (10, Test())

Example: Array as parameter

1 Dim Table.Point (10, 15)
2
3 Table (0,0)\x = 1
4 Table (1,0)\x = 2
5
6 Procedure TestIt(c.l, Array ParameterTable.Point (2)) ; The table

support 2 dimensions
7
8 ParameterTable (1, 2)\x = 3
9 ParameterTable (2, 2)\x = 4
10

137

11 EndProcedure
12
13 TestIt (10, Table())
14
15 MessageRequester("Table", Str(Table(1, 2)\x))

Syntax

Declare[.<type >] name(<parameter1 [.<type >]> [, <parameter2 [.<type >] [=
DefaultValue]>, ...])

Description

Sometimes a procedure need to call another procedure which isn’t declared before its definition. This is
annoying because the compiler will complain ’Procedure <name> not found’. Declare can help in this
particular case by declaring only the header of the procedure. Nevertheless, the Declare and real
Procedure declaration must be identical (including the correct type and optional parameters, if any).
For advanced programmers DeclareC is available and will declare the procedure using ’CDecl’ instead of
’StandardCall’ calling convention.

Example

1 Declare Maximum(Value1 , Value2)
2
3 Procedure Operate(Value)
4 Maximum (10, 2) ; At this time , Maximum () is unknown.
5 EndProcedure
6
7 Procedure Maximum(Value1 , Value2)
8 ProcedureReturn 0
9 EndProcedure

138

Chapter 46

Protected

Syntax

Protected[.<type >] <variable[.<type >]> [= <expression >] [, ...]

Description

Protected allows a variable to be accessed only in a Procedure even if the same variable has been
declared as Global in the main program. Protected in its function is often known as ’Local’ from other
BASIC dialects. Each variable can have a default value directly assigned to it. If a type is specified after
Protected, the default type is changed for this declaration. Protected can also be used with arrays , lists
and maps .
The value of the local variable will be reinitialized at each procedure call. To avoid this, you can use the
keyword Static , to separate global from local variables while keeping their values.

Example: With variable

1 Global a
2 a = 10
3
4 Procedure Change ()
5 Protected a
6 a = 20
7 EndProcedure
8
9 Change ()
10 Debug a ; Will print 10, as the variable has been protected.

Example: With array

1 Global Dim Array (2)
2 Array (0) = 10
3
4 Procedure Change ()
5 Protected Dim Array (2) ; This array is protected , it will be local.
6 Array (0) = 20
7 EndProcedure
8
9 Change ()

139

10 Debug Array (0) ; Will print 10, as the array has been protected.

140

Chapter 47

Prototypes

Syntax

Prototype.<type > name(<parameter >, [, <parameter > [= DefaultValue]...])

Description

For advanced programmers. Prototype allows to declare a type which will map a function. It’s useful
when used with a variable, to do a function pointer (the variable value will be the address the function
to call, and can be changed at will).
The last parameters can have a default value (need to be a constant expression), so if these parameters
are omitted when the function is called, the default value will be used.

Example

1 Prototype ProtoMax(Value , Print = #False)
2
3 Procedure Max1(Value , Print)
4 Debug "Max1 : " + Value
5 EndProcedure
6
7 Procedure Max2(Value , Print)
8 Debug "Max2 : " + Value
9 EndProcedure
10
11 Max.ProtoMax = @Max1() ; Set the function pointer
12 Max (10)
13
14 Max.ProtoMax = @Max2() ; Change the function pointer
15 Max (20) ; the function call doesn ’t change

141

Chapter 48

Repeat : Until

Syntax

Repeat
...

Until <expression > [or Forever]

Description

This function will loop until the <expression> becomes true. The number of loops is unlimited. If an
endless loop is needed then use the Forever keyword instead of Until. With the Break command, it is
possible to exit the Repeat : Until loop during any iteration. With Continue command, the end of the
current iteration may be skipped.

Example

1 a = 0
2 Repeat
3 a = a+1
4 Debug a
5 Until a > 10

This will loop until ”a” takes a value > to 10, (it will loop 11 times).

142

Chapter 49

Residents

Description

Residents are precompiled files which are loaded when the compiler starts. They can be found in the
’residents’ folder of the SpiderBasic installation path. A resident file must have the extension ’.res’ and
can contain the following items: structures , interfaces , macros and constants . It can not contain
dynamic code or procedures .
When a resident is loaded, all its content is available for the program being compiled. That’s why all
built-in constants like #PB_Event_CloseWindow are available, they are in the ’SpiderBasic.res’ file. All
the API structures and constants are also in a resident file. Using residents is a good way to store the
common macros, structure and constants so they will be available for every programs. When
distributing an user library, it’s also a nice solution to provide the needed constants and structures, as
SpiderBasic does.
To create a new resident, the command-line compiler needs to be used, as there is no option to do it
from the IDE. It is often needed to use /IGNORERESIDENT (-ir or –ignoreresident) and /RESIDENT
(-r or –resident) at the same time to avoid duplicate errors, as the previous version of the resident is
loaded before creating the new one.
Residents greatly help to have a faster compilation and compiler start, as all the information is stored in
binary format. It is much faster to load than parsing an include file at every compilation.

143

Chapter 50

Runtime

Syntax

Runtime Variable
Runtime #Constant
Runtime Procedure () declaration
Runtime Enumeration declaration

Description

For advanced programmers. Runtime is used to create runtime accessible list of programming objects
like variables, constants and procedures. Once compiled a program doesn’t have variable, constant or
procedure label anymore as everything is converted into binary code. Runtime enforces the compiler to
add an extra reference for a specific object to have it available through the Runtime library. The objects
can be manipulated using their string reference, even when the program is compiled.
Another use would be adding a small realtime scripting language to the program, allowing easy
modification of exposed variables, using runtime constants values. While it could be done manually by
building a map of objects, the Runtime keyword allows to do it in a standard and unified way.

Example: Procedure

1 Runtime Procedure OnEvent ()
2 Debug "OnEvent"
3 EndProcedure
4
5 Debug GetRuntimeInteger("OnEvent ()") ; Will display the procedure

address

Example: Enumeration

1 Runtime Enumeration
2 #Constant1 = 10
3 #Constant2
4 #Constant3
5 EndEnumeration
6
7 Debug GetRuntimeInteger("#Constant1")
8 Debug GetRuntimeInteger("#Constant2")
9 Debug GetRuntimeInteger("#Constant3")

144

Example: Variable

1 Define a = 20
2 Runtime a
3
4 Debug GetRuntimeInteger("a")
5 SetRuntimeInteger("a", 30)
6
7 Debug a ; the variable has been modified

145

Chapter 51

Select : EndSelect

Syntax

Select <expression1 >
Case <expression > [, <expression > [<numeric expression > To <numeric
expression >]]

...
[Case <expression >]

...
[Default]

...
EndSelect

Description

Select provides the ability to determine a quick choice. The program will execute the <expression1> and
retain its’ value in memory. It will then compare this value to all of the Case <expression> values and if
a given Case <expression> value is true, it will then execute the corresponding code and quit the Select
structure. Case supports multi-values and value ranges through the use of the optional To keyword
(numeric values only). If none of the Case values are true, then the Default code will be executed (if
specified).
Note: Select will accept floats as <expression1> but will round them down to the nearest integer
(comparisons will be done only with integer values).

Example: Simple example

1 Value = 2
2
3 Select Value
4 Case 1
5 Debug "Value = 1"
6
7 Case 2
8 Debug "Value = 2"
9
10 Case 20
11 Debug "Value = 20"
12
13 Default
14 Debug "I don ’t know"
15 EndSelect

146

Example: Multicase and range example

1 Value = 2
2
3 Select Value
4 Case 1, 2, 3
5 Debug "Value is 1, 2 or 3"
6
7 Case 10 To 20, 30, 40 To 50
8 Debug "Value is between 10 and 20, equal to 30 or between 40 and

50"
9
10 Default
11 Debug "I don ’t know"
12
13 EndSelect

147

Chapter 52

Using several SpiderBasic versions on
Windows

Overview

It is possible to install several SpiderBasic versions on your hard disk at the same time. This is useful to
finish one project with an older SpiderBasic version, and start developing a new project with a new
SpiderBasic version.

How to do it

Create different folders like ”SpiderBasic_1.00” and ”SpiderBasic_1.10” and install the related
SpiderBasic version in each folders.
When one ”SpiderBasic.exe” is started, it will assign all ”.sb” files with this version of SpiderBasic. So
when a source code is loaded by double-clicking on the related file, the currently assigned SpiderBasic
version will be started. Beside SpiderBasic will change nothing, which can affect other SpiderBasic
versions in different folders.
To avoid the automatic assignment of ”.sb” files when starting the IDE, a shortcut can be created from
SpiderBasic.exe with ”/NOEXT” as parameter. The command line options for the IDE are described
here .
Note: The settings for the IDE are saved in the %APPDATA%\SpiderBasic directory. To keep the
multiple versions from using the same configuration files, the /P /T and /A switches can be used.
Furthermore there is the /PORTABLE switch which puts all files back into the SpiderBasic directory
and disabled the creation of the .sb extension.

148

Chapter 53

Shared

Syntax

Shared <variable > [, ...]

Description

Shared allows a variable , an array , a list or a map to be accessed within a procedure . When Shared is
used with an array, a list or a map, only the name followed by ’()’ must be specified.

Example: With variable

1 a = 10
2
3 Procedure Change ()
4 Shared a
5 a = 20
6 EndProcedure
7
8 Change ()
9 Debug a ; Will print 20, as the variable has been shared.

Example: With array and list

1 Dim Array (2)
2 NewList List()
3 AddElement(List())
4
5 Procedure Change ()
6 Shared Array(), List()
7 Array (0) = 1
8 List() = 2
9 EndProcedure
10
11 Change ()
12 Debug Array (0) ; Will print 1, as the array has been shared.
13 Debug List() ; Will print 2, as the list has been shared.

149

Chapter 54

SpiderBasic objects

Introduction

The purpose of this section is to describe the behavior, creation, and handling of objects in SpiderBasic.
For the demonstration, we will use the Image object, but the same logic applies to all other SpiderBasic
objects. When creating an Image object, we can do it in two ways: indexed and dynamic.

I. Indexed numbering

The static, indexed way, allows you to reference an object by a predefined numeric value. The first
available index number is 0 and subsequent indexes are allocated sequentially. This means that if you use
the number 0 and then the number 1000, 1001 indexes will be allocated and 999 (from 1 to 999) will be
unused, which is not an efficient way to use indexed objects. If you need a more flexible method, use the
dynamic way of allocating objects, as described in section II. The indexed way offers several advantages:

- Easier handling, since no variables or arrays are required.
- ’Group’ processing, without the need to use an intermediate array.
- Use the object in procedures without declaring anything in global (if using a constant or a
number).
- An object that is associated with an index is automatically freed when reusing that index.

The maximum index number is limited to an upper bound, depending of the object type (usually from
5000 to 60000). Enumerations are strongly recommended if you plan to use sequential constants to
identify your objects (which is also recommended).

Example

1 CreateImage (0, 640, 480) ; Create an image , the n◦0
2 ResizeImage (0, 320, 240) ; Resize the n◦0 image

Example

1 CreateImage (2, 640, 480) ; Create an image , the n◦2
2 ResizeImage (2, 320, 240) ; Resize the n◦2 image

150

3 CreateImage (2, 800, 800) ; Create a new image in the n◦2 index , the
old one is automatically free ’ed

Example

1 For k = 0 To 9
2 CreateImage(k, 640, 480) ; Create 10 different images , numbered

from 0 to 9
3 ResizeImage(k, 320, 240) ; Create a new image in the n◦2 index , the

old one is automatically free ’ed
4 Next

Example

1 #ImageBackground = 0
2 #ImageButton = 1
3
4 CreateImage(#ImageBackground , 640, 480) ; Create an image (n◦0)
5 ResizeImage(#ImageBackground , 320, 240) ; Resize the background image
6 CreateImage(#ImageButton , 800, 800) ; Create an image (n◦1)

II. Dynamic numbering

Sometimes, indexed numbering isn’t very handy to handle dynamic situations where we need to deal
with an unknown number of objects. SpiderBasic provides an easy and complementary way to create
objects in a dynamic manner. Both methods (indexed and dynamic) can be used together at the same
time without any conflict. To create a dynamic object, you just have to specify the #PB_Any constant
instead of the indexed number, and the dynamic number will be returned as result of the function. Then
just use this number with the other object functions in the place where you would use an indexed
number (except to create a new object). This way of object handling can be very useful when used in
combination with a list , which is also a dynamic way of storage.

Example

1 DynamicImage1 = CreateImage(#PB_Any , 640, 480) ; Create a
dynamic image

2 ResizeImage(DynamicImage1 , 320, 240) ; Resize the
DynamicImage1

Overview of the different SpiderBasic objects

Different SpiderBasic objects (windows, gadgets, sprites, etc.) can use the same range of object numbers
again. So the following objects can be enumerated each one starting at 0 (or other value) and
SpiderBasic differs them by their type:

- Font
- Gadget
- JSON
- Image

151

- Menu (not MenuItem() , as this is no object)
- RegularExpression
- Sound
- Sprite
- ToolBar
- Window
- XML

152

Chapter 55

Static

Syntax

Static[.<type >] <variable[.<type >]> [= <constant expression >] [, ...]

Description

Static allows to create a local persistent variable in a Procedure even if the same variable has been
declared as Global in the main program. If a type is specified after Static, the default type is changed for
this declaration. Static can also be used with arrays , lists and maps . When declaring a static array, the
dimension parameter has to be a constant value.
The value of the variable isn’t reinitialized at each procedure call, means you can use local variables
parallel to global variables (with the same name), and both will keep their values. Each variable can
have a default value directly assigned to it, but it has to be a constant value.
Beside Static you can use the keyword Protected , to separate global from local variables, but with
Protected the local variables will not keep their values.

Example: With variable

1 Global a
2 a = 10
3
4 Procedure Change ()
5 Static a
6 a+1
7 Debug "In Procedure: "+Str(a) ; Will print 1, 2, 3 as the variable

increments at each procedure call.
8 EndProcedure
9
10 Change ()
11 Change ()
12 Change ()
13 Debug a ; Will print 10, as the static variable doesn ’t affect global

one.

Example: With array

1 Global Dim Array (2)
2 Array (0) = 10

153

3
4 Procedure Change ()
5 Static Dim Array (2)
6 Array (0)+1
7 Debug "In Procedure: " + Array (0) ; Will print 1, 2, 3 as the value

of the array field increments at each procedure call.
8 EndProcedure
9
10 Change ()
11 Change ()
12 Change ()
13 Debug Array (0) ; Will print 10, as the static array doesn ’t affect

global one.

154

Chapter 56

Structures

Syntax

Structure <name > [Extends <name >]
...

EndStructure

Description

Structure is useful to define user type, and access some OS memory areas. Structures can be used to
enable faster and easier handling of data files. It is very useful as you can group into the same object the
information which are common. Structures fields are accessed with the \ option. Structures can be
nested. Statics arrays are supported inside structures.
Dynamic objects like arrays, lists and maps are supported inside structure and are automatically
initialized when the object using the structure is created. To declare such field, use the following
keywords: Array, List and Map.
The optional Extends parameter allows to extends another structure with new fields. All fields found in
the extended structure will be available in the new structure and will be placed before the new fields.
This is useful to do basic inheritance of structures.
SizeOf can be used with structures to get the size of the structure and OffsetOf can be used to retrieve
the index of the specified field.
Please note, that in structures a static array[] doesn’t behave like the normal BASIC array (defined using
Dim) to be conform to the C/C++/JavaScript structure format (to allow direct API structure porting).
This means that a[2] will allocate an array from 0 to 1 where Dim a(2) will allocate an array from 0 to 2.
When using pointers in structures, the ’*’ has to be omitted when using the field, once more to ease API
code porting. It can be seen as an oddity (and to be honest, it is) but it’s like that since the very start of
SpiderBasic and many, many sources rely on that so it won’t be changed.
When using a lot of structure fields you can use the With : EndWith keywords to reduce the amount of
code to type and ease its readability.
It’s possible to perform a full structure copy by using the equal affectation between two structure
element of the same type.
ClearStructure can be used to clear a structured memory area. It’s for advanced use only, when pointers
are involved.

Example

1 Structure Person
2 Name.s
3 ForName.s
4 Age.w
5 EndStructure

155

6
7 Dim MyFriends.Person (100)
8
9 ; Here the position ’0’ of the array MyFriend ()
10 ; will contain one person and it ’s own information
11
12 MyFriends (0)\Name = "Andersson"
13 MyFriends (0)\Forname = "Richard"
14 MyFriends (0)\Age = 32

Example: A more complex structure (Nested and static array)

1 Structure Window
2 *NextWindow.Window ; Points to another window object
3 x.w
4 y.w
5 Name.s[10] ; 10 Names available (from 0 to 9)
6 EndStructure

Example: Extended structure

1 Structure MyPoint
2 x.l
3 y.l
4 EndStructure
5
6 Structure MyColoredPoint Extends MyPoint
7 color.l
8 EndStructure
9
10 ColoredPoint.MyColoredPoint\x = 10
11 ColoredPoint.MyColoredPoint\y = 20
12 ColoredPoint.MyColoredPoint\color = RGB(255, 0, 0)

Example: Structure copy

1 Structure MyPoint
2 x.l
3 y.l
4 EndStructure
5
6 LeftPoint.MyPoint\x = 10
7 LeftPoint\y = 20
8
9 RightPoint.MyPoint = LeftPoint
10
11 Debug RightPoint\x
12 Debug RightPoint\y

Example: Dynamic object

156

1 Structure Person
2 Name$
3 Age.l
4 List Friends$ ()
5 EndStructure
6
7 John.Person
8 John\Name$ = "John"
9 John\Age = 23
10
11 ; Now , add some friends to John
12 ;
13 AddElement(John\Friends$ ())
14 John\Friends$ () = "Jim"
15
16 AddElement(John\Friends$ ())
17 John\Friends$ () = "Monica"
18
19 ForEach John\Friends$ ()
20 Debug John\Friends$ ()
21 Next

Example: Pointers

1 Structure Person
2 *Next.Person ; Here the ’*’ is mandatory to declare a pointer
3 Name$
4 Age.b
5 EndStructure
6
7 Timo.Person\Name$ = "Timo"
8 Timo\Age = 25
9
10 Fred.Person\Name$ = "Fred"
11 Fred\Age = 25
12
13 Timo\Next = @Fred ; When using the pointer , the ’*’ is omitted
14
15 Debug Timo\Next\Name$; Will print ’Fred ’

157

Chapter 57

Subsystems

Introduction

SpiderBasic integrated commandset relies on specific libraries. Sometimes, there is different way to
achieve the same goal and when it makes sense, SpiderBasic offers the possibility to change the used
underlying libraries for specific commands, without changing one line of source code.
The available subsystems are located in the SpiderBasic ’subsystems’ folder. Any residents or libraries
found in this drawer will have precedency over the default libraries and residents, when a subsystem is
specified. Any number of different subsystems can be specified (as long it doesn’t affect the same
libraries).
The Subsystem compiler function can be used to detect if a specific subsystem is used for the
compilation.

Available subsystems

For now, SpiderBasic doesn’t have any additional subsystems.

158

Chapter 58

Variables and Types

Variables declaration

To declare a variable in SpiderBasic, simply type its name. You can also specify the type you want this
variable to be. Variables do not need to be explicitly declared, as they can be used as ”variables
on-the-fly”. The Define keyword can be used to declare multiple variables in one statement. If you don’t
assign an initial value to the variable, their value will be 0.

Example

1 a.b ; Declare a variable called ’a’ from byte (.b) type.
2 c.l = a*d.w ; ’d’ is declared here within the expression !

Notes:

Variable names must not start with a number (0,1,...), contain operators (+,-,...) or special
characters (ß,ä,ö,ü,...).
The variables in SpiderBasic are not case sensitive, so ”pure” and ”PURE” are the same
variable.
If you don’t need to change the content of a variable during the program flow (e.g. you’re
using fixed values for ID’s etc.), you can also take a look at constants as an alternative.
To avoid typing errors etc. it’s possible to force the SpiderBasic compiler to always want a
declaration of variables, before they are first used. Just use EnableExplicit keyword in your
source code to enable this feature.

Basic types

SpiderBasic allows many type variables which can be standard integers, float, double, quad and char
numbers or even string characters. Here is the list of the native supported types and a brief description :

Name | Extension | Memory consumption | Range
-------------+------------+---------------------------------+--
Byte | .b | 1 byte | -128 to
+127

Ascii | .a | 1 byte | 0 to
+255

Character | .c | 2 bytes | 0 to
+65535

Word | .w | 2 bytes | -32768
to +32767

159

Unicode | .u | 2 bytes | 0 to
+65535

Long | .l | 4 bytes |
-2147483648 to +2147483647

Integer | .i | 4 bytes (using 32-bit compiler) |
-2147483648 to +2147483647

Integer | .i | 8 bytes (using 64-bit compiler) |
-9223372036854775808 to +9223372036854775807

Float | .f | 4 bytes |
unlimited (see below)

Quad | .q | 8 bytes |
-9223372036854775808 to +9223372036854775807

Double | .d | 8 bytes |
unlimited (see below)

String | .s | string length + 1 |
unlimited

Fixed String | .s{Length} | string length |
unlimited

Unsigned variables: SpiderBasic offers native support for unsigned variables with byte and word types
via the ascii (.a) and unicode (.u) types. The character (.c) type is an unsigned word that may be used
as an unsigned type.
Notation of string variables: it is possible to use the ’$’ as last char of a variable name to mark it as
string. This way you can use ’a$’ and ’a.s’ as different string variables. Please note, that the ’$’ belongs
to the variable name and must be always attached, unlike the ’.s’ which is only needed when the string
variable is declared the first time.

1 a.s = "One string"
2 a$ = "Another string"
3 Debug a ; will give "One string"
4 Debug a$; will give "Another string"

Note: The floating numbers (floats + doubles) can also be written like this: 123.5e-20

1 value.d = 123.5e-20
2 Debug value ; will give 0.000000000000000001235

Operators

Operators are the functions you can use in expressions to combine the variables, constants, and whatever
else. The table below shows the operators you can use in SpiderBasic, in no particular order (LHS =
Left Hand Side, RHS = Right Hand Side).

Operator = (Equals)

This can be used in two ways. The first is to assign the value of the expression on the RHS to the
variable on the LHS. The second way is when the result of the operator is used in an expression and is to
test whether the values of the expressions on the LHS and RHS are the same (if they are the same this
operator will return a true result, otherwise it will be false).

Example

1 a = b+c ; Assign the value of the expression "b+c" to the
variable "a"

160

2 If abc = def ; Test if the values of abc and def are the same , and
use this result in the If command

Operator + (Plus)

Gives a result of the value of the expression on the RHS added to the value of the expression on the
LHS. If the result of this operator is not used and there is a variable on the LHS, then the value of the
expression on the RHS will be added directly to the variable on the LHS.

Example

1 number=something +2 ; Adds the value 2 to "something" and uses the
result with the equals operator

2 variable+expression ; The value of "expression" will be added
directly to the variable "variable"

Operator - (Minus)

Subtracts the value of the expression on the RHS from the value of the expression on the LHS. When
there is no expression on the LHS this operator gives the negative value of the value of the expression on
the RHS. If the result of this operator is not used and there is a variable on the LHS, then the value of
the expression on the RHS will be subtracted directly from the variable on the LHS. This operator
cannot be used with string type variables.

Example

1 var=#MyConstant -foo ; Subtracts the value of "foo" from "#MyConstant"
and uses the result with the equals operator

2 another=another+ -var ; Calculates the negative value of "var" and
uses the result in the plus operator

3 variable -expression ; The value of "expression" will be subtracted
directly from the variable "variable"

Operator * (Multiplication)

Multiplies the value of the expression on the LHS by the value of the expression on the RHS. If the
result of this operator is not used and there is a variable on the LHS, then the value of the variable is
directly multiplied by the value of the expression on the RHS. This operator cannot be used with string
type variables.

Example

1 total=price*count ; Multiplies the value of "price" by the value of
"count" and uses the result with the equals operator

2 variable*expression ; "variable" will be multiplied directly by the
value of "expression"

161

Operator / (Division)

Divides the value of the expression on the LHS by the value of the expression on the RHS. If the result
of this operator is not used and there is a variable on the LHS, then the value of the variable is directly
divided by the value of the expression on the RHS. This operator cannot be used with string type
variables.

Example

1 count=total/price ; Divides the value of "total" by the value of
"price" and uses the result with the equals operator

2 variable/expression ; "variable" will be divided directly by the
value of "expression"

Operator & (Bitwise AND)

You should be familiar with binary numbers when using this operator. The result of this operator will
be the value of the expression on the LHS anded with the value of the expression on the RHS, bit for bit.
The value of each bit is set according to the table below. Additionally, if the result of the operator is not
used and there is a variable on the LHS, then the result will be stored directly in that variable. This
operator cannot be used with strings.

LHS | RHS | Result

0 | 0 | 0
0 | 1 | 0
1 | 0 | 0
1 | 1 | 1

Example

1 ; Shown using binary numbers as it will be easier to see the result
2 a.w = %1000 & %0101 ; Result will be 0
3 b.w = %1100 & %1010 ; Result will be %1000
4 bits = a & b ; AND each bit of a and b and use result in equals

operator
5 a & b ; AND each bit of a and b and store result directly in variable

"a"

Operator ‖ (Bitwise OR)

You should be familiar with binary numbers when using this operator. The result of this operator will
be the value of the expression on the LHS or’ed with the value of the expression on the RHS, bit for bit.
The value of each bit is set according to the table below. Additionally, if the result of the operator is not
used and there is a variable on the LHS, then the result will be stored directly in that variable. This
operator cannot be used with strings.

LHS | RHS | Result

0 | 0 | 0
0 | 1 | 1
1 | 0 | 1
1 | 1 | 1

162

Example

1 ; Shown using binary numbers as it will be easier to see the result
2 a.w = %1000 | %0101 ; Result will be %1101
3 b.w = %1100 | %1010 ; Result will be %1110
4 bits = a | b ; OR each bit of a and b and use result in equals

operator
5 a | b ; OR each bit of a and b and store result directly in variable

"a"

Operator ! (Bitwise XOR)

You should be familiar with binary numbers when using this operator. The result of this operator will
be the value of the expression on the LHS xor’ed with the value of the expression on the RHS, bit for
bit. The value of each bit is set according to the table below. Additionally, if the result of the operator is
not used and there is a variable on the LHS, then the result will be stored directly in that variable. This
operator cannot be used with strings.

LHS | RHS | Result

0 | 0 | 0
0 | 1 | 1
1 | 0 | 1
1 | 1 | 0

Example

1 ; Shown using binary numbers as it will be easier to see the result
2 a.w = %1000 ! %0101 ; Result will be %1101
3 b.w = %1100 ! %1010 ; Result will be %0110
4 bits = a ! b ; XOR each bit of a and b and use result in equals

operator
5 a ! b ; XOR each bit of a and b and store result directly in variable

"a"

Operator * * (Bitwise NOT)

You should be familiar with binary numbers when using this operator. The result of this operator will
be the not’ed value of the expression on the RHS, bit for bit. The value of each bit is set according to
the table below. This operator cannot be used with strings.

RHS | Result

0 | 1
1 | 0

Example

1 ; Shown using binary numbers as it will be easier to see the result
2 a.w = ~%1000 ; Result will be %0111
3 b.w = ~%1010 ; Result will be %0101

163

Operator () (Brackets)

You can use sets of brackets to force part of an expression to be evaluated first, or in a certain order.

Example

1 a = (5 + 6) * 3 ; Result will be 33 since the 5+6 is evaluated first
2 b = 4 * (2 - (3 - 4)) ; Result will be 12 since the 3-4 is evaluated

first , then the 2-result , then the multiplication

Operator < (Less than)

This is used to compare the values of the expressions on the LHS and RHS. If the value of the expression
on the LHS is less than the value of the expression on the RHS this operator will give a result of true,
otherwise the result is false.

Operator > (More than)

This is used to compare the values of the expressions on the LHS and RHS. If the value of the expression
on the LHS is more than the value of the expression on the RHS this operator will give a result of true,
otherwise the result is false.

Operator <= (Less than or equal to)

This is used to compare the values of the expressions on the LHS and RHS. If the value of the expression
on the LHS is less than or equal to the value of the expression on the RHS this operator will give a
result of true, otherwise the result is false.

Operator >= (More than or equal to)

This is used to compare the values of the expressions on the LHS and RHS. If the value of the expression
on the LHS is more than or equal to the value of the expression on the RHS this operator will give a
result of true, otherwise the result is false.

Operator <> (Not equal to)

This is used to compare the values of the expressions on the LHS and RHS. If the value of the expression
on the LHS is equal to the value of the expression on the RHS this operator will give a result of false,
otherwise the result is true.

Operator And (Logical AND)

Can be used to combine the logical true and false results of the comparison operators to give a result
shown in the following table.

LHS | RHS | Result

false | false | false

164

false | true | false
true | false | false
true | true | true

Operator Or (Logical OR)

Can be used to combine the logical true and false results of the comparison operators to give a result
shown in the following table.

LHS | RHS | Result

false | false | false
false | true | true
true | false | true
true | true | true

Operator XOr (Logical XOR)

Can be used to combine the logical true and false results of the comparison operators to give a result
shown in the following table. This operator cannot be used with strings.

LHS | RHS | Result

false | false | false
false | true | true
true | false | true
true | true | false

Operator Not (Logical NOT)

The result of this operator will be the not’ed value of the logical on the RHS. The value is set according
to the table below. This operator cannot be used with strings.

RHS | Result

false | true
true | false

Operator « (Arithmetic shift left)

Shifts each bit in the value of the expression on the LHS left by the number of places given by the value
of the expression on the RHS. Additionally, when the result of this operator is not used and the LHS
contains a variable, that variable will have its value shifted. It probably helps if you understand binary
numbers when you use this operator, although you can use it as if each position you shift by is
multiplying by an extra factor of 2.

Example

1 a=%1011 << 1 ; The value of a will be %10110. %1011=11 , %10110=22
2 b=%111 << 4 ; The value of b will be %1110000. %111=7 , %1110000=112
3 c.l=$8000000 << 1 ; The value of c will be 0. Bits that are shifted

off the left edge of the result are lost.

165

Operator » (Arithmetic shift right)

Shifts each bit in the value of the expression on the LHS right by the number of places given by the
value of the expression on the RHS. Additionally, when the result of this operator is not used and the
LHS contains a variable, that variable will have its value shifted. It probably helps if you understand
binary numbers when you use this operator, although you can use it as if each position you shift by is
dividing by an extra factor of 2.

Example

1 d=16 >> 1 ; The value of d will be 8. 16=%10000 , 8=%1000
2 e.w=%10101010 >> 4 ; The value of e will be %1010. %10101010=170 ,

%1010=10. Bits shifted out of the right edge of the result are lost
(which is why you do not see an equal division by 16)

3 f.b=-128 >> 1 ; The value of f will be -64. -128=%10000000 ,
-64=%11000000. When shifting to the right , the most significant bit
is kept as it is.

Operator % (Modulo)

Returns the remainder of the RHS by LHS integer division.

Example

1 a=16 % 2 ; The value of a will be 0 as 16/2 = 8 (no remainder)
2 b=17 % 2 ; The value of a will be 1 as 17/2 = 8*2+1 (1 is remaining)

Operators shorthands

Every math operators can be used in a shorthand form.

Example

1 Value + 1 ; The same as: Value = Value + 1
2 Value * 2 ; The same as: Value = Value * 2
3 Value << 1 ; The same as: Value = Value << 1

Note: this can lead to ’unexpected’ results is some rare cases, if the assignment is modified before the
affection.

Example

1 Dim MyArray (10)
2 MyArray(Random (10)) + 1 ; The same as: MyArray(Random (10)) =

MyArray(Random (10)) + 1, but here Random () won ’t return the same
value for each call.

166

Operators priorities

Priority Level | Operators
---------------+---------------------

8 (high) | ~, -
7 | <<, >>, %, !
6 | |, &
5 | *, /
4 | +, -
3 | >, >=, <, <=, =, <>
2 | Not
1 (low) | And , Or, XOr

Structured types

Build structured types, via the Structure keyword. More information can be found in the structures
chapter .

Pointer types

Pointers are declared with a ’*’ in front of the variable name. More information can be found in the
pointers chapter .

Special information about Floats and Doubles

A floating-point number is stored in a way that makes the binary point ”float” around the number, so
that it is possible to store very large numbers or very small numbers. However, you cannot store very
large numbers with very high accuracy (big and small numbers at the same time, so to speak).
Another limitation of floating-point numbers is that they still work in binary, so they can only store
numbers exactly which can be made up of multiples and divisions of 2. This is especially important to
realize when you try to print a floating-point number in a human readable form (or when performing
operations on that float) - storing numbers like 0.5 or 0.125 is easy because they are divisions of 2.
Storing numbers such as 0.11 are more difficult and may be stored as a number such as 0.10999999. You
can try to display to only a limited range of digits, but do not be surprised if the number displays
different from what you would expect!
This applies to floating-point numbers in general, not just those in SpiderBasic.
Like the name says the doubles have double-precision (64-bit) compared to the single-precision of the
floats (32-bit). So if you need more accurate results with floating-point numbers use doubles instead of
floats.
The exact range of values, which can be used with floats and doubles to get correct results from
arithmetic operations, looks as follows:

Float: +- 1.175494e-38 till +- 3.402823e+38
Double: +- 2.2250738585072013e-308 till +- 1.7976931348623157e+308

More information about the ’IEEE 754’ standard you can get on Wikipedia.

167

http://en.wikipedia.org/wiki/IEEE_754

Chapter 59

While : Wend

Syntax

While <expression >
...

Wend

Description

Wend will loop until the <expression> becomes false. A good point to keep in mind with a While test is
that if the first test is false, then the program will never enter the loop and will skip this part. A Repeat
loop is executed at least once, (as the test is performed after each loop).
With the Break command it is possible to exit the While : Wend loop during any iteration, with the
Continue command the end of the current iteration may be skipped.

Example

1 b = 0
2 a = 10
3 While a = 10
4 b = b+1
5 If b=10
6 a=11
7 EndIf
8 Wend

This program loops until the ’a’ value is <> 10. The value of ’a’ becomes 11 when b=10, the program
will loop 10 times.

168

Chapter 60

With : EndWith

Syntax

With <expression >
...

EndWith

Description

With : EndWith blocks may be used with structure fields in order to reduce the quantity of code and to
improve its’ readability. This is a compiler directive, and works similarly to a macro , i.e., the specified
expression is automatically inserted before any anti-slash ’\’ character which does not have a space or an
operator preceding it. The code behaves identically to its’ expanded version. With : EndWith blocks
may not be nested, as this could introduce bugs which are difficult to track under conditions where
several statements have been replaced implicitly.

Example

1 Structure Person
2 Name$
3 Age.l
4 Size.l
5 EndStructure
6
7 Friend.Person
8
9 With Friend
10 \Name$ = "Yann"
11 \Age = 30
12 \Size = 196
13
14 Debug \Size+\Size
15 EndWith

Example: Complex example

1 Structure Body
2 Weight.l
3 Color.l

169

4 Texture.l
5 EndStructure
6
7 Structure Person
8 Name$
9 Age.l
10 Body.Body [10]
11 EndStructure
12
13 Friend.Person
14
15 For k = 0 To 9
16 With Friend\Body[k]
17 \Weight = 50
18 \Color = 30
19 \Texture = \Color*k
20
21 Debug \Texture
22 EndWith
23 Next

170

	I General
	Introduction
	Terms And Conditions
	System requirements
	Installation
	Order
	Contact
	Acknowledgements

	II The SpiderBasic Editor
	Getting Started
	Working with source files
	Editing features
	Managing projects
	Compiling your programs
	Using the built-in Tools
	Using external tools
	Getting Help
	Customizing the IDE
	Command-line options for the IDE

	III Language Reference
	Working with different number bases
	Break : Continue
	Using the command line compiler
	Compiler Directives
	Compiler Functions
	Data
	Debugger keywords in SpiderBasic
	Define
	Dim
	Enumerations
	For : Next
	ForEach : Next
	General Rules
	Global
	Handles and Numbers
	If : Else : EndIf
	Import : EndImport
	Includes Functions
	Inline Javascript
	Interfaces
	Licenses for the SpiderBasic applications
	Macros
	Pointers and memory access
	Module
	NewList
	NewMap
	Others Commands
	Procedures
	Protected
	Prototypes
	Repeat : Until
	Residents
	Runtime
	Select : EndSelect
	Using several SpiderBasic versions on Windows
	Shared
	SpiderBasic objects
	Static
	Structures
	Subsystems
	Variables and Types
	While : Wend
	With : EndWith

